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Abstract

Current state-of-the-art tools for verifying finite-precision computations compute
absolute error bounds on numerical errors. Unfortunately, absolute errors are of-
ten not a good estimate of accuracy as they do not take into account the magnitude
of the computed values. Relative errors, which compute the errors relative to the
magnitude, are thus preferable. However, no such general static verification tech-
nique exists today.
Computing relative errors accurately is already challenging by itself, in addition to
that we have to deal with the fact that the definition of relative errors presents a po-
tential inherent division by zero. We investigate different strategies for computing
tight relative error bounds and present a practical solution for dealing with division
by zero in this thesis. We have implemented several strategies within the approxi-
mating and verifying compiler Daisy and evaluated them on multiple benchmarks
with encouraging results.
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Chapter 1

Introduction

Embedded systems and scientific computing domains include many arithmetic com-
putations. The algorithms are usually designed for the real-valued computations.
However, if we want to implement continuous real-valued computations, we would
need to have also continuous memory, or in other words infinite memory. Hence,
real-valued computations have to be approximated and implemented in finite pre-
cision arithmetic.

One such arithmetic, that is ubiquitous in numerical software, is floating-point
arithmetic. Floating-points are supported by most of today’s hardware and software
and therefore are a common default for implementing numerical computations. As
floating-point arithmetic is an approximation of real (continuous) arithmetic, it in-
evitably introduces roundoff errors.

The roundoff errors are individually small but can accumulate and affect the
validity of computed results. Furthermore, due to roundoff errors some useful real
arithmetic properties do not hold anymore, for example in floating-point arithmetic
addition is not associative (a + b) + c 6= a + (b + c). Since most people reason
in real arithmetic and design the algorithms assuming real arithmetic properties to
hold, there arises a question: is what numerical software computes actually what the
algorithm designer wanted to compute? To see how critical a deviation is, one can
bound the difference between the real-valued result and the result of the floating-
point computation.

One way to capture this difference is to compute the absolute roundoff error:

errabs = max
x∈I

∣∣∣f(x)− f̂(x̂)
∣∣∣ (1.1)

where x is a real-valued input, f(x) is a real-valued function and x̂ and f̂(x̂)

are their floating-point counterparts. Note that for all possible inputs the error is
in general unbounded; to compute useful bounds the input domain is restricted. A
common way to define the input domain I is to use interval constraints for inputs,
i.e. I = [a, b], where a, b ∈ R.

To compute absolute roundoff errors we need to bound the difference between a
real-valued and a floating-point expression. The former is continuous, but the latter
is highly discontinuous, making reasoning in both arithmetics simultaneously hard.
Thus, automated tool support is essential.
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Automated tools should be able to compute a sound absolute roundoff error
bound, that is if we can state that for all possible inputs from input domain I the
actual roundoff error does not exceed the computed bound. Thus, we want to com-
pute a sound worst-case absolute roundoff error bound and we want to compute it
as tight, i.e. as close to the real bound, as possible. For nonlinear expressions f(x)

computing tight bounds is challenging because of the correlations between variables
that cannot be easily captured by standard range analyses (e.g. in standard interval
arithmetic [1] x−x 6= 0). This leads to an over-approximation of the computed error
bound.

Today’s static analysis tools implement a variety of different strategies to deal
with this over-approximation due to nonlinear expressions. Rosa [2] uses forward
dataflow analysis combined with a nonlinear decision procedure, Fluctuat [3] ex-
tends a similar analysis with interval subdivision, FPTaylor [4] solves a global opti-
mization problem using branch-and-bound method. Using all these techniques the
tools compute quite tight absolute error bounds.

However, absolute errors are not always a good estimate for the result’s accuracy.
Suppose an automated tool reports an error of 0.01 for some function f(x). Whether
this error is small and acceptable or not depends on the application as well as the
magnitude of the result’s value. If the result’s value f(x) � 0.01, the error may
be acceptable, while if f(x) ≈ 0.01 we should probably revise the computation or
increase its precision. The measure that captures this relationship is called relative
error:

errrel = max
x∈I

∣∣∣∣∣f(x)− f̂(x̂)

f(x)

∣∣∣∣∣ (1.2)

In addition to the fact that relative errors are more informative, they are also more
natural for user specifications. The user then needs to specify only one value to mea-
sure the quality of computations, and this specification can be applied to different
input ranges without any changes.

Moreover, over-approximations of absolute errors grow with the size of the input
domain. In general, the bigger the input domain is, the bigger the function range
is and the less tight the error bounds are. Since relative errors take into account
the resulting range, we expect the over-approximation to be smaller, which makes
relative errors more suitable for modular verification.

Existing static analysis tools usually report both absolute and relative errors. The
relative error in this case is computed as a relation between the absolute error and
function value, i.e:

errrel_approx =
maxx∈I

∣∣∣f(x)− f̂(x̂)
∣∣∣

minx∈I |f(x)|
(1.3)

While this is definitely a sound approach, this is an over-approximation, because
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errrel_approx does not take into account the correlations between nominator and de-
nominator. Thus, relative error bounds computed using Equation 1.3 are not neces-
sarily tight.

In this thesis, we explore techniques to compute sound and tight worst-case rela-
tive error bounds.

One strategy that we investigate is to compute relative errors directly following
the definition of relative error in Equation 1.2 as opposed to computing it via abso-
lute errors as in Equation 1.3. However, the direct computation simply following the
definition does not result in tight bounds for several reasons. First, the expression
in Equation 1.2 is quite complex and thus its evaluation may be too expensive. Sec-
ond, the division makes the relative error expression errrel nonlinear even for linear
f(x). Thus, it has many nonlinear correlations between variables, which are hard to
capture. There is a technique that allows to deal with both complexity of the expres-
sion and its nonlinearity, the Symbolic Taylor Expansion approach of FPTaylor which
was previously applied to absolute error computations. We extend this approach
to compute relative errors directly and show experimentally that the direct compu-
tation improves the bounds up to six orders of magnitude compared to computing
them via absolute errors.

Another well-known technique for tightening the bounds that we explore is
interval subdivision. Interval subdivision means that input intervals are broken
into several smaller sub-intervals. Since smaller input domains in general cause
smaller over-approximation committed by static analysis, the hope is that the over-
approximation on several small sub-domains is less than for one big domain. We
combine interval subdivision with both forward analysis and the optimization-based
approaches and investigate its effect on the tightness of computed relative error
bounds.

The second important challenge arising while computing relative error bounds
using both Equation 1.2 and Equation 1.3 is potential inherent division by zero.
Whenever the range of f(x) contains zero, no useful bound can be computed. This
indeed occurs often and today’s static analysis tools report no relative error for most
standard benchmarks for this reason.

In this thesis, we propose a practical (but preliminary) solution for dealing with
division by zero. We localize its effect by using interval subdivision: our approach
attempts to compute relative error for every sub-domain and records those sub-
domains where division by zero occurred. For the latter we report absolute errors.
Our experiments show that for the most of standard benchmarks the proposed prac-
tical approach provides more useful information than state-of-the-art tools.

Contributions

− We present the first systematic study of fully automated computation tech-
niques for sound worst-case relative roundoff error bounds.
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− We re-implement in Daisy the optimization-based approach for computing the
absolute roundoff errors and provide the comparison with the absolute error
bounds computed by the FPTaylor tool itself.

− We extend the optimization-based approach of FPTaylor to relative errors and
thus provide the first feasible and fully automated approach for computing
relative errors directly.

− We perform an extensive experimental evaluation of the implemented tech-
niques and compare the relative error bounds and running times with state-
of-the-art tools.

− We demonstrate that the direct computation of relative errors scales better than
their computation via absolute errors.

− We show that interval subdivision is beneficial for reducing the over-approxi-
mation in absolute error computations, but less so for relative errors computed
directly.

− We demonstrate that interval subdivision provides a practical solution to the
division by zero challenge of relative error computation for certain bench-
marks

− We have implemented all techniques within a single tool, called Daisy [5],
allowing us to perform a direct comparison of the techniques. We release
Daisy as open source, it is available at https://gitlab.mpi-sws.org/
AVA/daisy-public.

Organization of Thesis

This thesis is organized as follows:

− Chapter 2 provides necessary background on floating-point arithmetic and
range arithmetic and describes how today’s static analysis tools use these for
the absolute error bound computations.

− Chapter 3 describes the tool Daisy, where we have implemented all strategies
for computing relative error bounds. This chapter details features of Daisy
before the work presented in this thesis has been integrated into it.

− In Chapter 4 we present our implementation of the optimization-based ap-
proach for absolute roundoff errors from FPTaylor. While computing absolute
errors is not the main focus of the thesis, it provides an interesting comparison
with absolute errors computed using FPTaylor. We use this implementation
and further extend it to relative errors.

https://gitlab.mpi-sws.org/AVA/daisy-public
https://gitlab.mpi-sws.org/AVA/daisy-public
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− Chapter 5 details the techniques for computing tight relative error bounds that
we have implemented inside Daisy: interval subdivision and direct relative
error computation (instead of computing via absolute errors). We provide de-
tails on the implementation and report experimental evaluation results for all
implemented strategies in comparison with state-of-the-art tools.

− In Chapter 6 we explain our practical approach for handling potential division
be zero in computation of relative errors. We also show on the experimental
result that the proposed solution is able to provide relative error bounds for
sub-domains of several benchmarks, for which state-of-the-art tools could not
compute any relative error estimate.

− Chapter 7 presents on overview of related work.
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Chapter 2

Background

We start with necessary background about floating-point arithmetic and range arith-
metic. We then explain how these are used in state-of-the-art techniques for auto-
mated sound worst-case absolute roundoff error estimation.

2.1 Floating-Point Arithmetic

Floating-point arithmetic is an approximation of real arithmetic. To be able to quan-
tify the difference between these two, we first look at the implementation of floating-
point arithmetic. Today most hardware and software supports the IEEE 754 standard
for floating-points [6]. In this thesis we also assume this standard and in the follow-
ing subsection we provide the key aspects of it. For more detailed information about
floating-point arithmetic, please see [6, 7].

IEEE 754

The IEEE 754 standard defines how floating-point arithmetic is implemented on a
machine, by defining e.g. a concrete representation for floating-point numbers, a
definition of arithmetic operations on these numbers, etc.

The general representation of a floating-point number has a base β (which is an
even number) and a precision p. Using these parameters a floating-point number
is represented as ±mm. . .m × βe, where ± is defined by a sign bit s, e is an expo-
nent and mm. . .m is called the mantissa (or significand) and has p digits. That is
s.m1m2 . . .mp−1 × βe represents the number:

±
(
m0 +m1β

−1 + . . .+mp−1β
−(p−1)

)
βe, (0 ≤ mi ≤ β) (2.1)

The floating-point representation has two more parameters, the largest and the
smallest allowed exponents, emax and emin. Knowing emax, emin, β and p, the amount
of bits needed to encode the number can be calculated as [7]

dlog2(emax − emin + 1)e+ dlog2(β
p)e+ 1

where the final +1 is for the sign bit.
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Parameter
Format

Single Single-
Extended

Double Double-
Extended

p 24 32 53 64
emax +127 1023 +1023 >16383
emin -126 ≤ -1022 -1022 ≤ -16382

Exponent width in bits 8 ≤ 11 11 15
Format width in bits 32 43 64 79

TABLE 2.1: IEEE 754 format parameters

IEEE 754 defines for β = 2 four different precisions: single, double, single-
extended and double-extended. For example single precision occupies a single 32
bit word, out of which 1 bit is used for the sign, 8 bits for the exponent, and 23
bits for the mantissa. Parameter values for all data types are shown in Table 2.1.
Most state-of-the-art tools for computing the roundoff error bounds support double
precision, which is the most widely used default precision used today. To make a
comparison with state-of-the-art tools in this thesis we also chose double precision,
although our approach is parametric in this, and thus applicable to other floating-
point precisions as well.

There are several special values, described in IEEE 754, whose representation
differs from Equation 2.1 in that their exponents are out of normal range.

− Zero is encoded with exponent e = emin − 1 and all zeros in the mantissa. As
the sign bit has two possible values, there are two zero values: −0 and +0, but
they compare as equal. Both are treated as normal floating-point numbers.

− Denormalized numbers (also called denormals or subnormals) are numbers be-
tween zero and the least representable normal value in the selected precision.
Their exponent is e = emin − 1 and the mantissa encodes the number itself.
Denormals are intended to widen the range of real numbers for which some
useful properties of real arithmetic hold. For example, if the difference be-
tween variables x and y is sufficiently small such that it cannot be represented
as a normal floating-point number, the result of an operation x − y would be
flushed to zero, and then the property x = y ↔ x − y = 0 does not necessar-
ily hold. A behavior of denormals preserving this property (and some other
properties) is called gradual underflow.

− Not a number (NaN) represents an undefined or unrepresentable value. NaNs
provide an alternative to halting a computation whenever operations like 0/0

or
√
−1 occur. If at least one of the operands is NaN, the whole expression

results in NaN. In IEEE 754, NaNs are represented with exponent e = emax + 1

and a nonzero mantissa, which contains system-dependent information gener-
ated when the first NaN in the computation was generated (except when both
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operands are NaN, then the information can describe either of them, and not
necessarily the first generated).

− Infinity represents a value with an arbitrarily large magnitude. The standard
distinguishes positive and negative infinities, which differ in the sign bit. For
both±∞, the exponent is e = emax+1 and the mantissa contains only zeros. In-
finities are in general useful, as they provide a way to continue a computation
when an overflow occurs. Similarly when a division by zero occurs c/0 = ±∞,
as long as c 6= 0. While all operations containing NaN result in NaN, ex-
pressions containing ±∞, however, might result in an ordinary floating-point
number, e.g. 1/∞ = 0. In general, the rule for determining the result of an
operation where one operand is infinity is the following: replace infinity with
a finite number x and take a limit with x → ∞. When the limit does not exist,
the result is a NaN, e.g∞/∞ is NaN.

The standard also defines five rounding modes: rounding to nearest (ties to even,
ties away from zero) and directed rounding (towards zero, +∞, −∞). We will con-
sider the rounding mode that is used by the Java Virtual Machine (JVM) and is the
default for most today’s software, i.e. rounding to the nearest, ties to even.

According to IEEE 754, arithmetic operations are treated as if the result was
first computed in infinite precision and then rounded to the specified finite preci-
sion. For our rounding mode this means that the result from any basic operation
(+,−, ∗, /,

√
) is the closest representable floating-point number. Thus, the abstract

model for floating-point variables and operations is the following:

x̃ = x(1 + e) + d

x� y = (x ◦ y)(1 + e) + d, ◦ ∈ {+,−, ∗, /},� ∈ {⊕,	,⊗,�}
√
x◦ = (

√
x)(1 + e) + d,

|e| ≤ εM , |d| ≤ δ

(2.2)

where εM is the maximum relative roundoff error introduced by rounding at each
operation, and δ is the maximum absolute error used to represent roundoff error for
denormals. For double precision floating-point numbers εM = 2−53 and δ = 2−1075.
The abstraction in Equation 2.2 is only valid in the absence of overflows and invalid
operations resulting in NaN, i.e. not for infinities and NaNs.

2.2 Range Arithmetic

To obtain a roundoff error for a program one can compute the floating-point func-
tion value for a single program execution and compare it with a result of a higher-
precision computation or a manually computed real value. However, if we want to
compute the roundoff error not only for a single input, but for a whole range, we
need to apply range arithmetic to track function ranges and error bounds. In the fol-
lowing subsections we give a brief overview of different types of range arithmetic.
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2.2.1 Interval Arithmetic

One of the basic types of range arithmetic is interval arithmetic [1]. In interval arith-
metic every variable x is associated with a closed interval [a, b], meaning that all
possible values of x lie inside this interval, i.e. a ≤ x ≤ b. An interval [a, a], for
which the lower and the upper bounds match, is called a point interval.

Given a real-valued function f(x1, . . . , xn) and a list of intervals associated with
its inputs [ai, bi] interval arithmetic computes an over-approximation [c, d] of the re-
sulting function range over the input domain, i.e.:

∀xi. xi ∈ [ai, bi]→ f(x1, . . . , xn) ∈ [c, d] (2.3)

To be able to perform range analysis, one needs to know how the basic arithmetic
operations are defined. Assuming X and Y are intervals, the resulting range for one
arithmetic operation is defined as

X ◦ Y = {z | ∃x ∈ X, y ∈ Y. z = x ◦ y} ◦ ∈ {+,−,×, /} (2.4)

Unfortunately, interval arithmetic often gives pessimistic bounds, because it can-
not capture the correlation between variables. This is easy to see on a simple exam-
ple, take for instance x ∈ [0, b] and f(x) = x−x. Clearly, the resulting range for f(x)

is always zero independent from the interval of x. However, interval arithmetic
computes the resulting range [−b, b].

At the same time, this method is easy to implement and is reasonably fast, thus
it provides an interesting accuracy-performance trade-off.

2.2.2 Affine Arithmetic

Unlike interval arithmetic, affine arithmetic [8] is able to track linear correlations
between variables. Values of variables are represented by affine forms:

x̆ = x0 +
n∑
i=1

xiεi, (2.5)

where εi ∈ [−1, 1]. Here x0 denotes the mid point of the represented interval, so-
called central value, and each term xiεi is a noise term around the central value with
maximum magnitude xi. εi are called noise symbols, they capture linear correlations
between variables.

The range represented by an affine form is computed as

[x̆] = [x0 −
n∑
i=1

|xi|, x0 +

n∑
i=1

|xi|]

Linear arithmetic operations are performed term wise. A general linear affine
operation αx̆+βy̆+ζ consists of addition, subtraction, addition of a constant (ζ) and
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multiplication by a constant (α, β). For affine forms x̆ and y̆, the operation is defined
as:

αx̆+ βy̆ + ζ = (αx0 + βy0 + ζ) +
n∑
i=1

(αxi + βyi)εi (2.6)

Coming back to the example with function f(x) = x − x, we see that affine
arithmetic captures the dependency between operands, and thus reduces the over-
approximation by computing the resulting range zero:

x− x = (x0 + x1ε1)− (x0 + x1ε1) = x0 − x0 + x1ε1 − x1ε1 = 0

Unlike linear operations, which are computed exactly, the nonlinear operations
like multiplication, inverse or square root have to be approximated. Multiplication
is computed as:

x̆y̆ = x0y0 +

n∑
i=1

(x0yi + y0xi)εi + ηεn+1 (2.7)

where η is an over-approximation of the higher-order terms of the nonlinear opera-
tion. η can be computed in several different ways, the simplest one is η =

∑n
i=1 |xi|×∑n

i=1 |yi|.
Division is computed as x

y = x× 1
y and other than that follows Equation 2.7. For

unary functions, such as the square root and inverse, first an affine approximation

√
x = α× x+ ζ + θ

is computed, where α and ζ are determined by a linear approximation of the func-
tion and θ represents all errors committed by rounding and approximation. After
that the affine operation Equation 2.6 is performed term wise. Details on α, ζ and θ

computation can be found in [9].
While affine arithmetic is beneficial for linear operations it does not always give

tighter bounds than interval arithmetic. Both types perform well in certain cases,
and both are used for absolute roundoff error bounds computation by state-of-the-
art tools.

2.3 State-of-the-Art in Absolute Error Estimation

In this section, we review state-of-the-art automated tools for absolute error estima-
tion. The error definitions from Chapter 1 compute the difference between an origi-
nal real-valued function f(x) and its floating-point implementation f̂(x̂). Not every
real number can be exactly represented by a floating-point number, thus, due to
the necessary rounding f̂(x̂) becomes a highly discontinuous function. This makes
bounding the difference

∣∣∣f(x)− f̂(x̂)
∣∣∣ directly hard. A common way to overcome

this difficulty is to replace f̂(x̂) with an abstraction using Equation 2.2.
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Using this abstraction, we replace f̂(x̂) with the function f̃(x, e, d) where x are
input variables and e and d are the roundoff errors introduced for each floating-
point operation. In general, for multivariate functions x, e and d are vector valued,
but for ease of reading we will not use the vector notation in the equations. Note
that our abstraction f̃(x, e, d) is a real-valued function. Using this function we and
all state-of-the-art tools approximate absolute errors as:

errabs ≤ max
x∈I,|ei|≤εM ,|di|≤δ

∣∣∣f(x)− f̃(x, e, d)
∣∣∣ (2.8)

Since the input domain I is a range, applying range arithmetic to the expression
to be maximized, we obtain absolute roundoff error bounds. However, this naive
approach over-approximates the bounds when the function f(x) is nonlinear. State-
of-the-art tools attempt to reduce the over-approximation and compute tight bounds
using different techniques, which we detail below.

2.3.1 Rosa

Rosa [2] computes absolute error bounds using a forward data-flow analysis and a
combination of abstract domains. Note that the magnitude of the absolute roundoff
error at an arithmetic operation depends on the magnitude of the operation’s value,
and this is in turn determined by the input parameter ranges. Thus, Rosa tracks two
values for each intermediate abstract syntax tree (AST) node: a sound approximation
of the real valued range and the worst-case absolute error. The data-flow analysis
transfer function for errors uses the ranges to propagate errors from subexpressions
and to compute the new roundoff error committed by the arithmetic operation in
question. The following example illustrates how the ranges are used to propagate
the error on a multiplication operation. Here the real range of a variable x is denoted
as [x] and the associated error term as errx, thus [x̂] = [x] + errx.

x̂× ŷ = ([x] + errx)([y] + erry) =

= [x]× [y] + [x]× erry + [y]× errx + errx × erry + ρ
(2.9)

where ρ is the new roundoff error. Thus, the first term is the ideal real-valued
range and the remaining terms contribute to the error. It is easy to see, that the
larger the real ranges [x] and [y] are, the larger the computed error is, so that it is
important to estimate real ranges accurately.

One may think that just evaluating an expression in interval arithmetic and in-
terpreting the width of the resulting interval as the error bound would be sufficient.
While this is certainly a sound approach, it computes too pessimistic error bounds
in general. This is especially true if we consider relatively large ranges on inputs; we
cannot distinguish which part of the interval width is due to the input interval or
due to accumulated roundoff errors. Hence, we need to compute ranges and errors
separately.
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For error propagation Rosa uses affine arithmetic. For bounding ranges it imple-
ments different range arithmetics with different accuracy-efficiency trade-offs: in-
terval arithmetic, affine arithmetic and a combination of interval arithmetic with a
nonlinear arithmetic decision procedure. We now explain the latter procedure in
more detail.

Refining interval arithmetic with SMT. While both interval and affine arithmetic
are reasonably fast methods, the over-approximation they give is often too large, es-
pecially if input ranges are not sufficiently small. Darulova and Kuncak [10] propose
a technique to reduce the over-approximation by combining interval arithmetic with
a nonlinear SMT (Satisfiability Modulo Theories) constraint solver.

For each range to be computed, first the technique computes an initial sound
estimate of the range I0 = [l, u] with interval arithmetic. Note that lower and upper
bounds are computed separately following the same procedure. The second step
of the algorithm is to check whether the computed range I0 is already tight. For
the lower bound l, it means that the bound is increased by a small nonnegative
value p (this value is a precision threshold) and then the Z3 SMT solver [11] is asked
whether the expression’s resulting range lies below this new bound l+p. If the solver
reports affirmative, the lower bound l was already tight. Symmetrically, the check is
performed for the upper bound. If the initial range I0 is not tight, then it is taken as
a starting point and narrowed down by a binary search. At each step of the search
the technique checks whether the narrowed range is sound using the nonlinear nlsat
decision procedure [12] within the Z3 SMT solver. The search terminates when one
of the following conditions is met: Z3 returns unknown or times out, the difference
between bounds on the subsequent steps is less than a specified precision threshold
or the maximum number of iterations of the algorithm is reached.

The two last conditions serve to limit the amount of calls to the SMT solver,
because these calls are fairly expensive. One more heuristic method to reduce the
amount of calls implemented in Rosa is to call Z3 only every 10 arithmetic opera-
tions. The values for these three parameters can be changed by user. The current
configuration has empirically resulted in a good accuracy-performance trade-off.

2.3.2 Fluctuat

Fluctuat [3] is an abstract interpreter which separates errors similarly to Rosa and
which uses affine arithmetic for computing both the ranges of variables and for the
error bounds. In order to reduce the over-approximations introduced by affine arith-
metic for nonlinear operations, Fluctuat uses interval subdivision. The user can des-
ignate up to two variables in the program whose input ranges will be subdivided
into intervals of equal width. The analysis is performed separately on each subinter-
val and the overall error is then the maximum error over all subintervals. Interval
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subdivision increases the runtime of the analysis significantly, especially for multi-
variate functions, and the choice of which variables to subdivide and by how much
is usually not straight-forward.

Another tool Gappa [13] also uses forward dataflow analysis, but combines it
with interval arithmetic instead of affine.

2.3.3 FPTaylor

FPTaylor [4] takes a different approach, unlike Daisy and Fluctuat it formulates the
roundoff error bounds computation as an optimization problem, where the absolute
error expression |f(x)− f̂(x̂)| is maximized, subject to interval constraints on its pa-
rameters. Due to the discrete nature of floating-point arithmetic, FPTaylor optimizes
the continuous, real-valued abstraction (Equation 2.8). However, this expression is
still too complex and features too many variables for optimization procedures in
practice, resulting in bad performance as well as bounds which are too coarse to be
useful (see subsection 5.4.2 for our own experiments).

FPTaylor introduces the Symbolic Taylor approach, where the objective function
of Equation 2.8 is simplified using a first order Taylor approximation with respect to
e and d:

f̃(x, e, d) = f̃(x, 0, 0) +

k∑
i=1

∂f̃

∂ei
(x, 0, 0)ei +R(x, e, d) (2.10)

where

R(x, e, d) =
1

2

2k∑
i,j=1

∂2f̃

∂yi∂yj
(x, p)yiyj +

k∑
i=1

∂f̃

∂di
(x, 0, 0)di

where y1 = e1, . . . , yk = ek, yk+1 = d1, . . . , y2k = dk and p ∈ R2k such that |pi| ≤ εM

for i = 1 . . . k and |pi| ≤ δ for i = k + 1 . . . 2k. The remainder term R bounds all
higher order terms and ensures soundness of the computed error bounds.

The approach is symbolic in the sense that the Taylor approximation is taken
wrt. e and d only and x remains a symbolic argument. Thus, f(x, 0, 0) represents
the function point where all inputs x remain symbolic and no roundoff errors are
present, i.e. e = d = 0 and f(x, 0, 0) = f(x), i.e. the real-valued ideal function.
Choosing e = d = 0 as the point at which to perform the Taylor approximation and
replacing ei with its upper bound εM reduces the initial optimization problem to:

errabs ≤ εM max
x∈I

k∑
i=1

∣∣∣∣∣ ∂f̃∂ei (x, 0, 0)

∣∣∣∣∣+MR (2.11)

where MR is an upper bound for the error term R(x, e, d) (more details can be found
in [4]). FPTaylor uses interval arithmetic to estimate the value of MR as the term is
second order of e and thus small in general.

To solve the optimization problem in Equation 2.11, FPTaylor uses rigorous branch-
and-bound optimization based on interval arithmetic, which is implemented in the
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global optimization tool Gelpia [14]. Alternatively, FPTaylor works with several ex-
ternal global optimization tools and libraries, such as NLopt [15]. Although algo-
rithms implemented in NLopt are not rigorous, they are fast and can be used for ob-
taining preliminary results before running a slower optimization technique. Branch-
and-bound is also used to compute the resulting real function range maxx∈I |f(x)|,
which is needed for instance to compute relative errors or to check for overflows.

Real2Float [16], another tool, takes the same optimization-based approach, but
uses semi-definite programming for the optimization itself.
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Chapter 3

Daisy

We have implemented all techniques, which we are aiming to combine and compare
in the tool called Daisy [5]. Daisy, a successor of Rosa, is a source-to-source compiler
from real arithmetic computations to a finite-precision implementation.

Before this project, Daisy (and the other tools described in Chapter 2) computed
sound worst-case absolute error bounds and used them for relative error computa-
tion (when possible). Daisy is internally structured in several phases:

Frontend. As input, Daisy takes a program written in a real-valued specifica-
tion language (a functional subset of Scala) consisting of one or more functions. An
example function looks like this:

def bspline0(u: Real): {Real} = {

require(0 <= u && u <= 1)

(1 - u) * (1 - u) * (1 - u) / 6.0

}

Daisy parses the input program and builds an abstract syntax tree (AST) for the
arithmetic expression in the function body.

Note that the input program is not executable. The specification describes the
real-valued function, where all input variables and the resulting value have data
type Real.

Specification Phase. After the input program has been parsed, Daisy extracts
preconditions. In the precondition (the require clause) the user provides the ranges
of all input variables. This information is needed for the next phase.

Range Error Analysis Phase. The approach for sound roundoff error estimation
is adapted from Rosa, which splits the analysis into two steps:

− range analysis: compute real-valued ranges for all intermediate expressions

− error analysis: using the previously computed ranges, propagate errors from
sub-expressions and compute the new worst-case roundoffs

Such a separation is necessary to compute tight error bounds for ranges of inputs.
Similarly to Rosa, Daisy tracks roundoff errors using affine arithmetic, and for

range analysis it offers the choice between interval, affine arithmetic and Rosa’s pro-
cedure, where initially computed intervals are refined using a nonlinear decision
procedure.
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For different floating-point types, the roundoff error is different and the user can
choose the uniform precision for the resulting program. By default, Daisy uses dou-
ble floating-point precision. During the Range Error Analysis phase Daisy computes
a sound worst-case absolute roundoff error, with respect to the selected floating-
point precision. In order to make sure that it does not introduce roundoff errors
internally, all computations are done using infinite-precision rationals based on big
integers (BigInt in Scala). At the end of the phase, Daisy reports the computed
roundoff error alongside with the resulting real-valued function range.

Code Generation Phase. As output, Daisy generates a finite-precision implemen-
tation of the input program, thus it is a transformer between high-level languages.
It generates executable code for the selected floating-point precision, currently in
Scala, but generation of some other high-level language code (e.g. C/C++) would
be a straight-forward extension.

3.1 Extensions

As part of this thesis, we have implemented several new phases, each providing
an alternative to the Range Error Analysis Phase to compute roundoff errors. Note
that each of the phases is used separately. We provide here a short overview of the
extensions and give more details in the following sections.

− Taylor Error Phase (Chapter 4). In this phase, we have reimplemented the opti-
mization based approach of FPTaylor for the computation of absolute roundoff
errors.

− Relative Through Absolute Error Phase. During this phase, we compute relative
error bounds using a combination of interval subdivision and state-of-the-art
absolute error computation as in Equation 1.3 (Chapter 5).

− Relative Error Phase (Chapter 5). In this phase, we have implemented a direct
relative error computation, without taking an intermediate step for computing
absolute errors.
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Chapter 4

Optimization Based Approach in
Daisy

As we mentioned before, Daisy (as well as Rosa and Fluctuat) uses forward dataflow
analysis for the estimation of error bounds and FPTaylor uses an optimization-based
approach. Since we want to extend FPTaylor’s approach to the direct computation
of relative errors, we need to implement it in Daisy. But before going into relative
errors we have reimplemented FPTaylor’s approach for computing absolute errors
with some modifications. While computing absolute errors is not the main focus
of the thesis, it provides an interesting comparison with absolute errors computed
using FPTaylor.

We build the expression to be optimized in a similar way as FPTaylor does (sub-
section 2.3.3), thus the expression is a first order Taylor approximation similarly
to Equation 2.11 with a difference that we do not pull terms ei out of the sum. The
second order remainder R is expected to be small, so that we use interval arithmetic
to compute a bound on our MR. Experiments have shown that for our benchmarks
the remainder term is indeed small (on average, 14 orders of magnitude less than the
derivative terms). We note that even if the remainder term is not small, the approach
remains sound. To bound the first order terms ∂g̃

∂ei
, we need a sound optimization

procedure to maintain overall soundness, which limits the available choices signifi-
cantly.

FPTaylor uses the global optimization tool Gelpia [14], which internally uses a
branch-and-bound based algorithm. Unfortunately, we found it difficult to integrate
because of its custom interface. Furthermore, we observed Gelpia’s unpredictable
behavior in our experiments (e.g. nondeterministic crashes and substantially vary-
ing running times for repeated runs on the same expression).

Instead, we use Rosa’s approach which combines interval arithmetic with a solver-
based refinement (section 2.3.1). Our approach is parametric in the solver and we
experiment with Z3 [11] and dReal [17]. Both support the SMT-lib interface, provide
rigorous results, but are based on fundamentally different techniques. Z3 imple-
ments a complete decision procedure for nonlinear arithmetic (in the nlsat solver [12]),
whereas dReal implements the framework of δ-complete decision procedures, which
is based on a branch-and-bound algorithm internally.
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Benchmark Under-
approx FPTaylor opt based

Z3
opt based

dReal
Univariate benchmarks

bspline0 2.79e-17 1.39e-16 1.19e-16 1.19e-16
bspline1 1.64e-16 5.15e-16 6.51e-16 6.51e-16
bspline2 1.51e-16 5.43e-16 5.82e-16 5.82e-16
bspline3 5.07e-17 8.33e-17 1.11e-16 1.11e-16

sine 2.56e-16 5.55e-16 6.54e-16 6.54e-16
sineOrder3 3.32e-16 9.52e-16 8.00e-16 8.00e-16

sqroot 1.86e-13 3.61e-13 3.97e-13 3.97e-13

Multivariate benchmarks

doppler 5.87e-14 1.58e-13 1.74e-13 1.72e-13
himmilbeau 4.84e-13 1.32e-12 1.42e-12 1.42e-12

invPendulum 2.02e-14 3.84e-14 4.44e-14 4.44e-14
jet 4.13e-12 1.34e-11 2.49e-11 2.19e-11

kepler0 3.81e-14 9.44e-14 1.15e-13 1.18e-13
kepler1 1.13e-13 3.56e-13 4.99e-13 4.96e-13
kepler2 4.59e-13 1.95e-12 2.28e-12 2.54e-12

rigidBody1 1.79e-13 3.86e-13 5.08e-13 5.08e-13
rigidBody2 1.96e-11 5.23e-11 6.48e-11 6.48e-11

traincar_state8 5.88e-15 1.35e-14 1.33e-14 1.33e-14
traincar_state9 6.06e-15 1.22e-14 1.20e-14 1.20e-14

turbine1 6.01e-15 2.31e-14 2.80e-14 2.82e-14
turbine2 1.01e-14 2.55e-14 3.67e-14 3.67e-14
turbine3 4.01e-15 1.24e-14 1.65e-14 1.65e-14

TABLE 4.1: Absolute roundoff error bounds computed with FPTaylor
and the optimization-based approach in Daisy

Note that the queries we send to both solvers are (un)satisfiability queries, and
not optimization queries. For the nonlinear decision procedure this is necessary as it
is not suitable for direct optimization, but the branch-and-bound algorithm in dReal
is performing optimization internally. The reason for our roundabout approach for
dReal is that while the tool has an optimization interface, it uses a custom input
format and is difficult to integrate. We expect this to affect mostly performance,
however, and not accuracy.

4.1 Experimental Comparison

We compare our implementation of the optimization based approach in Daisy against
FPTaylor.

All experiments are performed in double floating-point precision (the precision
FPTaylor supports), although all techniques in Daisy are parametric in the preci-
sion. The experiments were performed on a desktop computer running Debian
GNU/Linux 8 64-bit with a 3.40GHz i5 CPU and 7.8GB RAM.

The benchmarks bsplines, doppler, jetengine, rigidBody, sine, sqrt and turbine are
nonlinear functions from [2]; invertedPendulum and the traincar benchmarks are lin-
ear embedded examples from [18]; and himmilbeau and kepler are nonlinear examples
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Benchmark FPTaylor opt based
Z3

opt based
dReal

Univariate benchmarks

bsplines 16.91s 29.81s 18.78s
sines 10.89s 45.13s 63.76s

sqroot 5.48s 19.01s 11.07s

Multivariate benchmarks

doppler 10s 2m 33s 3m 42s
himmilbeau 8.77s 35.70s 29.94s

invPendulum 6.25s 5.78s 2.92s
jet 18.87s 9m 41s 14m 8s

kepler 2m 25s 5m 41s 11m 43s
rigidBody 10.47s 49.80s 26.61s

traincar 54.97s 32.92s 3m 25s
turbine 31.44s 1m 50s 5m 34s

total 5m 19s 23m 23s 41m 4s

TABLE 4.2: Comparison of running times for computing absolute
roundoff error bounds using FPTaylor and the optimization-based

approach of Daisy

from the Real2Float project [16].
Table 4.1 shows absolute error bounds computed with FPTaylor and Daisy’s op-

timization based approach. Here and further in the thesis, bold marks the best result,
i.e. the tightest computed bound. The column ’Under-approx’ gives an (unsound)
under-approximation for the absolute error bound obtained with dynamic evalua-
tion on 100000 inputs. The under-approximation provides an idea of the order of
magnitude of the true errors. Column ’FPTaylor’ contains absolute error bounds
computed by FPTaylor; columns ’Opt based Z3’ and ’Opt based dReal’ show the
error bounds for the optimization based approach implemented in Daisy evalu-
ated with solvers Z3 and dReal respectively. For both solvers a timeout for each
(un)satisfiability query is 1 second.

Comparing absolute error bounds computed by FPTaylor and Daisy with the
under-approximation we see that the values are close, which means bounds com-
puted by both FPTaylor and Daisy are quite tight. We noticed that for most bench-
marks the error bounds computed by FPTaylor are tighter, while for a few bench-
marks bspline0, sineOrder3 and traincar_state8(-9) Daisy’s implementation (with ei-
ther of the two available solvers) provides tighter bounds. Interestingly, for the ma-
jority of benchmarks (except bspline3 and kepler0) error bounds reported in three last
columns of Table 4.1 are very close to each other. Since the difference is so small,
we can state that by replacing Gelpia with the combination of interval arithmetic
and nonlinear decision procedure we can still achieve adequately good results in
accuracy.

Table 4.2 provides the running times for FPTaylor and Daisy’s optimization-
based approach. Note that the running times are cumulated for benchmarks con-
tained in one program (e.g. times for sine and sineOrder3 are summed in sines).
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Daisy’s running times are noticeably greater for all benchmarks except for linear
invertedPendulum, where a combination of Daisy with dReal outperforms FPTaylor
by more than 2 times and traincar, where Daisy together with Z3 shows the smallest
running time. We suspect that the difference in performance is due to the fact that in
the interval refinement procedure we call the solvers repeatedly for each term, while
FPTaylor only the queries global optimization for each term once.
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Chapter 5

Bounding Relative Errors

The main goal of this thesis is to investigate how today’s sound approaches for com-
puting absolute errors fare for bounding relative errors and whether it is possible
and advantageous to compute relative errors directly (and not via absolute errors).
In this section, we first concentrate on obtaining tight bounds in the presence of non-
linear arithmetic, and postpone a discussion of the orthogonal issue of division by
zero to the next section. Thus, we assume for now that the range of the function
for which we want to bound relative errors does not include zero, i.e. 0 /∈ f(x) and
0 /∈ f̃(x̃), for x, x̃ within some given input domain. We furthermore consider f to be
an arithmetic expression that does not contain transcendental functions and is spec-
ified as straight-line code in the input program. Conditionals and loops have been
shown to be challenging [10] even for absolute errors and we thus leave their proper
treatment for future work. We consider function calls to be an orthogonal issue; they
can be handled by inlining, thus reducing to straight-line code, or require suitable
summaries in postconditions, which is also one of the motivations for this work.

We implement interval subdivision (section 5.1), which is a measure to reduce
over-approximation and apply it to the state-of-the-art methods for estimation of
absolute error bounds. We then use the potentially improved absolute errors to
compute relative error bounds. We furthermore extend FPTaylor’s approach to com-
puting relative errors directly (section 5.2) and provide implementation details (sec-
tion 5.3). We experimentally evaluate different configurations of implemented tech-
niques and combinations of techniques on a set of standard benchmarks (section 5.4)
and show based on the experiments that the direct approach for computing relative
error bounds scales better than the one via absolute errors even with interval subdi-
visions applied.

5.1 Interval Subdivision

The over-approximation committed by static analysis techniques grows in general
with the width of the input intervals, and thus with the width of all intermediate
ranges. Intuitively, the worst-case error which we consider is usually achieved only
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for a small part of the domain, over-approximating the error for the remaining in-
puts. Additionally the domain where worst-case errors are obtained may be differ-
ent at each arithmetic operation.

Thus, by subdividing the input domain we can usually obtain tighter error bounds.
Fluctuat has applied interval subdivision to absolute error estimation, but we are not
aware about a study of its effectiveness for relative errors.

We apply subdivision to input variables and combine it with state-of-the-art ab-
solute error computation, thus we compute:

max
k∈[1...m]

maxxj∈Ijk

∣∣∣f(x)− f̃(x, e, d)
∣∣∣

minxj∈Ijk |f(x)|

 (5.1)

where m is an number of subdivisions for each input interval. That is, for mul-
tivariate functions, we subdivide the input interval for each variable and maximize
the error over the Cartesian product. Clearly, the analysis running time is expo-
nential in the number of variables. While Fluctuat limits subdivisions to two user-
designated variables and a user-defined number of subdivisions each, we choose to
limit the total number of analysis runs by a user-specified parameter p. First, we sort
the input domains, larger domains come first. Then we compute potential number
of analysis runs pi if the i-th domain is subdivided. That is, given m (the desired
number of subdivisions for each variable) and n (the number of input variables), pi
is computed as:

pi = mi + (n− i), i ∈ [1..n] (5.2)

If computed value is smaller than the specified limit pi ≤ p, i-th interval is sub-
divided m times and algorithm repeats for (i+ 1)-th input domain. If pi > p, the i-th
interval and all further n− i intervals remain undivided.

5.2 Bounding Relative Errors Directly

Another strategy we explore is to compute relative errors directly, without taking the
intermediate step through absolute errors. That is, we extend FPTaylor’s optimiza-
tion based approach and maximize the relative error expression using the floating-
point abstraction from Equation 2.2:

max |g̃(x, e, d)| = max
x∈I,|ei|≤εM ,|di|≤δ

∣∣∣∣∣f(x)− f̃(x, e, d)

f(x)

∣∣∣∣∣ (5.3)

The hope is to preserve more correlations between variables in the nominator and
denominator and thus obtain tighter and more informative relative error bounds.

We call the evaluation of Equation 5.3 without simplifications the naive approach.
While it has been mentioned previously that this approach does not scale well [4],
we include it in our experiments nonetheless, as we are not aware of any concrete
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results actually being reported. That said, as expected, the naive approach returns
error bounds which are so large that they are essentially useless (see section 5.4 for
our experiments).

We thus simplify g̃(x, e, d) by applying the Symbolic Taylor approach introduced
by FPTaylor [4]. As before, we take the Taylor approximation around the point
(x, 0, 0), so that the first term of the approximation is zero as before: g̃(x, 0, 0) = 0.
We obtain the following optimization problem:

max
x∈I,|ei|≤εM ,|di|≤δ

k∑
i=1

∣∣∣∣ ∂g̃∂ei (x, 0, 0)ei

∣∣∣∣+MR (5.4)

where MR is an upper bound for the remainder term R(x, e, d). Unlike in Equa-
tion 2.11 we do not pull the factor ei for each term out of the absolute value, as we
plan to compute tight bounds for mixed-precision in the future, where the upper
bounds on all ei are not all the same (this change does not affect the accuracy for
uniform precision computations though).

Note that for computing upper bounds we use exactly the same techniques as
for the optimization based approach for absolute error bounds in Daisy (Chapter 4).
That is, we apply the SMT solver-based refinement of intervals for the derivative
terms ∂g̃

∂ei
(x, 0, 0)ei and interval analysis for the remainder term MR.

One more strategy that can potentially lead to tighter computed bounds is to
combine the optimization-based approach with interval subdivision. That is, we
compute:

max
k∈[1...m]

(
max
xj∈Ijk

∣∣∣∣∣f(x)− f̃(x, e, d)

f(x)

∣∣∣∣∣
)

(5.5)

wherem is an number of subdivisions for each input interval and the subdivision
is performed as described in section 5.1.

5.3 Implementation

We implement all the described techniques in the tool Daisy [5]. Daisy is parametric
in the approach (naive, forward data-flow analysis or optimization based), the solver
used (Z3 or dReal) and the number of subdivisions (including none). Any combina-
tions of these three orthogonal choices can be run by simply changing Daisy’s input
parameters.

Daisy has been implemented in Scala, therefore all extensions (see section 3.1) are
implemented in Scala as well. Some features of Daisy require additional software to
be installed. Using the solver-based intervals refinement procedure (section 2.3.1)
requires Z3 and dReal solvers to be installed, for the dynamic evaluation an external
library MPFR [19] is needed.
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5.3.1 Simplifications

In many cases the derivative expressions that we obtain by applying Taylor expan-
sion remain complex. This might affect the running time of solvers (and thus also po-
tentially the accuracy of the error bounds). We observed that the solvers do not nec-
essarily perform arithmetic simplifications. Therefore we have implemented them
inside Daisy. In general, there are many possible arithmetic simplification rules, we
restrain ourselves to a limited set of rules, which we base on the observations of
the unsimplified expressions. Daisy performs the simplification recursively on the
complete AST until no rules can be applied further to any of the sub-expressions.

We split the simplifications into two groups: ‘initial’ and ‘advanced’. The ‘initial’
group contains the rules for the simplifications that are performed often; mostly they
are for arithmetic expressions with two operands:

− e+ 0→ e, e− 0→ e (same for −e)

− e× 1→ e, e× 0→ 0 (same for −e)

− e/1→ e, 0/e→ 0

− e/e→ 1, −e/e→ −1

− e+ e→ 2e

− −(−e)→ e

− −0→ 0

− c1 ◦ c2 → c3, where c1, c2, c3 are constants, ◦ ∈ {+,−,×, /} and c3 is computed
as result of real arithmetic operation. For example, if c1 = 2, c2 = 3 and the
operation ◦ = × then c3 = 2× 3 = 6

− 1
e1/e2

→ e2
e1

where e (or ei) denotes any subexpression, i.e. it can be both a leaf of the AST or
a subtree, c (or ci) denotes a constant. These rules are applied to every intermediate
expression, e.g. deriving the expression for Equation 5.4 we apply ’initial’ simplifi-
cations to every derivative term ∂g̃

∂ei
(x, 0, 0)ei and every second order derivative term

∂2g̃
∂ei∂ej

(x, e, d)eiej .
The ‘advanced’ group contains the rules for simplifications that are performed

only once the complete expression Equation 5.4 is built. These rules mostly combine
several levels of nodes of the AST:

− e× e→ e2, en × e→ en+1

− en × em → en+m

− (en)m = enm
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− (e1 × e2) + (e1)→ e1 × (e2 + 1)

− (e1× e2) + (e1× e3)→ e1× (e2 + e3) and symmetric rules if the repeating term
is e2 or e3

− ((c1 × e) × . . .) × c2 → c3 × e, where c1, c2 are constants and c3 = c1 × c2,
i.e. multiply the constants that belong to different leafs of the (sub-)tree, if the
(sub-)tree contains only multiplications

− e1
e2
× e3
e4
→ e1e3

e2e4

− e1
e2
× e3 →

e1e3
e2

and
1

e2
× e3 →

e3
e2

− (e1 × c)× e1 → c× e21

− (c× en)× e→ c× en+1

− e1/e2
e3/e4

→ e1e4
e2e3

− e1e2 . . .

e1e3 . . .
→ e2 . . .

e3 . . .
, i.e. cancel repeating factors in nominator and denominator

(e1 in this example)

Applying these simplifications in some cases (benchmarks bspline0, bspline2, b-
spline3) resulted in that the simplified term only contained ±εM . Daisy does not call
the SMT solver on simple expressions (leafs of the AST: variable, ei and di from Equa-
tion 5.4), thus these simplifications reduce the amount of calls to SMT solver and
hence also reduce analysis running time.

5.4 Experimental Evaluation

The experimental evaluation contains several parts. First we compare relative error
bounds obtained with different subdivision parameters to find a good default con-
figuration (subsection 5.4.1). Note that we only subdivide input intervals for eval-

uating the derivative terms
∂g̃

∂ei
(x, 0, 0)ei, we evaluate the remainder term MR on

the undivided domain. We then compare different techniques implemented within
Daisy (using the default configuration found) against FPTaylor and the forward
dataflow analysis approach from Daisy before the current project as representatives
of state-of-the-art tools (subsection 5.4.2). We also investigate how the absence of de-
normals in the floating-point function abstraction affects the accuracy and running
times of the optimization based approach for absolute and relative error bounds
in Daisy (subsection 5.4.3). Finally we show the improved scalability of the direct
relative error computation with respect to the computation via absolute errors (sub-
section 5.4.4).

We perform all our experiments on the standard benchmark set that we have
described in section 4.1. Similarly in all tables bold marks the best result, i.e. tightest



28 Chapter 5. Bounding Relative Errors

Benchmark # of vars p = 50 p = 100
m = 2 m = 5 m = 8 m = 2 m = 5 m = 8

Univariate benchmarks

bspline0 1 3.00e-15 3.00e-15 3.00e-15 3.00e-15 3.00e-15 3.00e-15
bspline1 1 3.22e-15 3.22e-15 3.22e-15 3.22e-15 3.22e-15 3.22e-15
bspline2 1 8.92e-16 8.92e-16 8.92e-16 8.92e-16 8.92e-16 8.92e-16
bspline3 1 6.66e-16 6.66e-16 6.66e-16 6.66e-16 6.66e-16 6.66e-16

sine 1 7.66e-16 7.66e-16 7.66e-16 7.66e-16 7.66e-16 7.66e-16
sineOrder3 1 8.94e-16 8.94e-16 8.94e-16 8.94e-16 8.94e-16 8.94e-16

sqroot 1 1.02e-15 1.02e-15 1.02e-15 1.02e-15 1.02e-15 1.02e-15

Multivariate benchmarks

doppler 3 1.93e-13 1.93e-13 1.93e-13 1.93e-13 1.93e-13 1.93e-13
himmilbeau 2 7.83e-14 1.10e-14 7.05e-15 7.83e-14 1.10e-14 5.80e-15

invPendulum 4 1.21e-15 1.21e-15 1.21e-15 1.21e-15 1.21e-15 1.21e-15
jet 2 4.47e-15 4.92e-15 6.03e-15 4.47e-15 4.92e-15 4.47e-15

kepler0 6 3.66e-13 6.63e-13 1.63e-15 3.80e-13 7.05e-13 7.33e-13
kepler1 4 8.53e-12 8.10e-13 2.85e-13 8.33e-12 8.10e-13 4.63e-13
kepler2 6 9.65e-11 1.46e-11 8.58e-12 9.65e-11 1.46e-11 5.61e-12

rigidBody1 3 9.78e-16 9.78e-16 9.78e-16 9.78e-16 9.78e-16 9.78e-16
rigidBody2 3 2.21e-15 2.21e-15 2.21e-15 2.21e-15 2.21e-15 2.21e-15

traincar_state8 14 7.67e-14 7.67e-14 7.67e-14 7.67e-14 7.67e-14 7.67e-14
traincar_state9 14 3.45e-14 3.45e-14 3.45e-14 3.45e-14 3.45e-14 3.45e-14

turbine1 3 2.06e-15 2.06e-15 2.06e-15 2.06e-15 2.06e-15 2.06e-15
turbine2 3 4.12e-15 4.12e-15 4.12e-15 4.12e-15 4.12e-15 4.31e-15
turbine3 3 1.91e-14 1.91e-14 1.91e-14 1.91e-14 1.91e-14 1.91e-14

TABLE 5.1: Comparison of different configurations for subdivision

computed error bound, for each benchmark. When the values are the same for all
techniques compared in one table, we do not mark the best result.

To evaluate the accuracy and performance of the different approaches for the
case when no division by zero occurs, we modify the standard input domains of
the benchmarks whenever necessary such that the function ranges do not contain
zero and all tools can thus compute a non-trivial relative error bound. We show the
benchmarks in Appendix B.

5.4.1 Finding Default Configuration for Subdivision

Our subdivision approach is parametric in the amount of subdivisions for each in-
terval m and the total amount of optimizations p. In order to define good defaults
for the parameters, we have executed multiple tests. The experiments are done for
the optimization-based approach for several subdivision values m = 2, 5, 8 in com-
bination with two different values for the limit for the total analysis runs number
(p = 50, 100). We used the Z3 solver with a timeout of 1 second for testing all config-
urations.

Table 5.1 shows the relative error bounds for different subdivision values, Ta-
ble 5.2 gives running times for these configurations. The column ’# of vars’ shows
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Benchmark p = 50 p = 100
m = 2 m = 5 m = 8 m = 2 m = 5 m = 8

Univariate benchmarks

bspline0 6s 12s 18s 7s 12s 17s
bspline1 8s 16s 24s 9s 16s 24s
bspline2 10s 18s 26s 11s 18s 27s
bspline3 2s 6s 8s 3s 5s 9s

sine 1m 3s 1m 13s 1m 26s 1m 19s 1m 14s 1m 41s
sineOrder3 5s 10s 15s 5s 10s 15s

sqroot 14s 24s 36s 15s 25s 35s

Multivariate benchmarks

doppler 2m 41s 4m 6s 2m 58s 2m 44s 4m 7s 7m 17s
himmilbeau 2m 9s 8m 34s 6m 15s 2m 14s 8m 30s 14m 59s

invPendulum 52s 1m 7s 25s 55s 1m 6s 2m 40s
jet 351s 58m 45s 45m 31s 34m 1s 47m 57s 1h 22m 35s

kepler0 12m 47s 11m 25s 1m 40s 32m 39s 11m 49s 21m 34s
kepler1 15m 54s 16m 54s 5m 8s 15m 29s 17m 15s 43m 8s
kepler2 12m 7s 15m 46s 5m 32s 41m 41s 1h 16m 50s 430s

rigidBody1 30s 1m 17s 29s 30.74s 1m 16s 2m 55s
rigidBody2 1m 8s 2m 34s 57s 1m 7s 2m 35s 5m 57s

traincar_state8 8m 10s 5m 57s 2m 13s 15m 39s 5m 57s 14m 52s
traincar_state9 7m 28s 5m 12s 1m 54s 14m 20s 5m 26s 13m 33s

turbine1 2m 48s 4m 54s 2m 59s 2m 27s 4m 59s 153s
turbine2 4m 21s 16m 8s 6m 7s 3m 52s 15m 4s 31m 57s
turbine3 3m 17s 7m 9s 3m 24s 2m 57s 7m 14s 14m 34s

total 1h 46m 49s 2h 42m 26s 1h 29m 7s 2h 52m 45s 3h 32m 46s 5h 11m 14s

TABLE 5.2: Comparison of running times for different configurations
for subdivision

the amount of input variables for each benchmark. Columns ’2’, ’5’, ’8’ show the
bounds computed with m = 2, 5 and 8 subdivisions for input intervals respectively.

We noticed that, perhaps surprisingly, a more fine-grained subdivision does not
gain accuracy for most of the benchmarks. For those benchmarks where we ob-
served different error bounds three out of five tightest bounds (himmilbeau, jet and
kepler2) were computed with the configuration m = 8, p = 100. The second best
choice in terms of accuracy is m = 8, p = 50, when the bounds for himmilbeau, jet
and kepler differ from the tightest computed bounds only insignificantly.

One may think that the greater the number of subdivisions m is, the larger are
the running times. Indeed it is the case when all input intervals are subdivided.
Recall that, to limit this effect we introduced the total amount of optimizations p.
For the univariate benchmarks the influence of p is not noticeable, since the total
amount of optimizations is equal to the amount of subdivisions in this case, and is
below the limit p. For multivariate benchmarks we observe that p limits the amount
of variables where intervals are subdivided and hence limits runtime. Thus, the
configuration with the greatest tested subdivision value 8 has the smallest total running
time when p = 50.
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Keeping in mind the accuracy-performance trade-off, we select the following de-
fault configuration: for univariate benchmarks m = 2 and p = 50; for multivariate
benchmarks m = 8 and p = 50.

5.4.2 Comparison with State-of-the-Art Tools

We compare the different strategies for relative error computation on a set of stan-
dard benchmarks with representatives of state-of-the-art: FPTaylor and the forward
dataflow analysis approach from Daisy. We do not compare with Fluctuat and
Gappa directly as the underlying error estimation technique based on forward anal-
ysis with affine arithmetic is very similar to Daisy’s. We rather choose to implement
interval subdivision within Daisy.

Table 5.3 shows the relative error bounds computed with the different techniques
and tools, and Table 5.4 the corresponding analysis times. The column ’Under-
approx’ is an unsound relative error bound obtained with dynamic evaluation on
100000 inputs. The under-approximation gives an idea of the order of magnitude of
the true roundoff errors. Thus, if the difference between the under-approximation
and error values computed by the analysis is several orders of magnitude, the anal-
ysis likely committed a big over-approximation. The ’Naive approach’ column pre-
sents relative error bounds computed using the naive approach. We notice that
the exponents of the computed bounds are mostly positive, meaning the values are
huge. This confirms that an approximation of the relative error expression is indeed
necessary.

The last four columns show the error bounds when relative errors are computed
directly using the optimization based approach from section 5.2, with the Z3 and
dReal solvers and with and without subdivisions. For subdivisions, we use p = 50

and m = 2 for univariate functions and p = 50 and m = 8 for multivariate, as we
defined them to be good defaults (see subsection 5.4.1).

For most of the benchmarks we find that the direct evaluation of relative er-
rors computes tightest error bounds with acceptable analysis times. Furthermore,
for most benchmarks Z3, resp. its nonlinear decision procedure, is able to compute
slightly tighter error bounds, but for three of our benchmarks dReal performs sig-
nificantly better, while the running times are comparable.

We note that interval subdivision has a limited effect when combined with the di-
rect relative error computation, and can, due to timeouts, actually decrease accuracy,
while also increasing the running time significantly.

Comparing against state-of-the-art techniques (columns Daisy and FPTaylor,
which compute relative errors via absolute errors), we notice that their results are
sometimes several orders of magnitude less accurate than the direct relative error
computation (e.g. six orders of magnitude for the bspline3 and doppler benchmarks).

The column ‘fwd analysis+subdiv’ shows relative errors computed via absolute
errors using the forward analysis with subdivision (with the same parameters as
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Benchmark
Under-
approx

Daisy FPTaylor
Naive

approach

fwd
analysis
+ subdiv

Opt.-based approach for direct relative error.
comp.

Z3 dReal Z3 + subdiv dReal + subdiv

Univariate benchmarks

bspline0 1.46e-15 4.12e-13 4.26e-13 5.11e+02 7.44e-14 3.00e-15 3.00e-15 3.00e-15 3.00e-15
bspline1 7.91e-16 2.54e-15 3.32e-15 4.16e-01 5.32e-15 3.22e-15 3.22e-15 3.22e-15 3.22e-15
bspline2 2.74e-16 1.11e-15 1.16e-15 5.22e-01 1.61e-15 8.92e-16 9.76e-16 8.92e-16 8.92e-16
bspline3 5.49e-16 2.46e-10 3.07e-10 5.12e+05 5.23e-11 6.66e-16 6.66e-16 6.66e-16 6.66e-16

sine 2.84e-16 8.94e-16 8.27e-16 4.45e-01 1.39e-15 7.66e-16 7.66e-16 7.66e-16 7.66e-16
sineOrder3 3.65e-16 1.04e-15 1.10e-15 1.39e-01 1.99e-15 8.94e-16 8.94e-16 8.94e-16 8.94e-16

sqroot 4.01e-16 1.04e-15 1.21e-15 1.02e+00 2.20e-15 1.02e-15 1.02e-15 1.02e-15 1.02e-15

Multivariate benchmarks

doppler 1.06e-15 2.08e-04 6.13e-07 2.09e+08 2.60e-05 1.93e-13 1.94e-13 1.93e-13 1.94e-13
himmilbeau 8.46e-16 6.55e-13 7.89e-13 6.69e+02 9.81e-15 6.54e-13 1.98e-15 7.05e-15 1.99e-15

invPendulum 3.74e-16 2.09e-11 2.48e-11 1.64e+00 1.22e-11 1.21e-15 1.35e-15 1.21e-15 1.52e-15
jet 1.45e-15 9.26e-15 7.53e-15 3.87e+00 1.40e-13 4.47e-15 5.12e-15 6.03e-15 6.51e-15

kepler0 4.39e-16 1.31e-12 1.64e-12 2.16e+03 3.63e-12 3.97e-12 2.39e-15 1.63e-15 2.64e-15
kepler1 7.22e-16 2.17e-11 2.59e-11 7.93e+04 8.70e-13 3.80e-11 1.29e-15 2.85e-13 1.71e-15
kepler2 5.28e-16 4.01e-10 5.65e-15 4.09e+05 1.35e-11 4.56e-10 2.42e-15 8.58e-12 2.26e-15

rigidBody1 4.49e-16 8.77e-11 1.14e-10 1.55e+00 2.50e-11 9.78e-16 1.27e-15 9.78e-16 1.46e-15
rigidBody2 5.48e-16 3.91e-12 4.73e-12 5.14e+03 1.77e-12 2.21e-15 2.33e-15 2.21e-15 2.96e-15

traincar_state8 2.72e-15 2.16e-13 2.69e-13 2.91e+02 2.16e-13 7.67e-14 2.72e-13 7.67e-14 2.50e-13
traincar_state9 8.11e-16 3.44e-13 4.31e-13 3.47e+02 1.91e-13 3.45e-14 4.15e-13 3.45e-14 2.38e-13

turbine1 5.79e-16 6.47e-13 1.48e-13 4.16e+02 6.81e-13 2.06e-15 3.07e-15 2.06e-15 3.90e-15
turbine2 1.03e-15 5.26e-15 4.25e-15 4.81e+00 1.66e-13 4.12e-15 4.30e-15 4.12e-15 4.33e-15
turbine3 7.41e-16 3.52e-13 7.43e-14 2.13e+02 3.91e-13 1.91e-14 1.92e-14 1.91e-14 1.93e-14

TABLE 5.3: Relative error bounds computed by different techniques
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Benchmark Daisy FPTaylor
Naive

approach

fwd
analysis
+ subdiv

Opt.-based approach for direct
relative error. comp.

Z3 dReal Z3 + subdiv dReal + subdiv

Univariate benchmarks

bsplines 6s 13s 13m 25s 0.34s 20s 25s 27s 30s
sines 5s 8s 13m 45s 0.42s 1m 4s 1m 21s 1m 8s 1m 9s

sqroot 3s 6s 6m 4s 0.15s 14s 12s 14s 14s

Multivariate benchmarks

doppler 5s 2m 11s 2m 14s 1s 1m 59s 2m 35s 2m 58s 7m 28s
himmilbeau 9s 4s 5m 30s 0.36s 1m 50s 1m 16s 6m 15s 8m 5s

invPendulum 3s 5s 1m 31s 0.15s 7s 37s 25s 3m 54s
jet 20s 17s 19m 35s 7s 30m 40s 32m 24s 45m 31s 2 h 20m 49s

kepler 37s 39s 14m 41s 1s 3m 27s 16m 29s 12m 20s 27m 56s
rigidBody 11s 8s 10m 4s 0.39s 30s 1m 18s 1m 26s 8m 37s

traincar 10s 42s 8m 15s 1s 1m 1s 10m 43s 4m 7s 18m 35s
turbine 11s 28s 17m 25s 2s 5m 29s 11m 28s 12m 30s 42m 36s

total 1m 60s 5m 1s 1h 52m 28s 13s 46m 42s 1h 18m 45s 1h 27m 22s 4h 19m 53s

TABLE 5.4: Running times for computing the relative error bound using different techniques
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above). Here we observe that unlike for the directly computed relative errors, inter-
val subdivision is mostly beneficial. However, even with benefits from subdivision
relative errors in this column are less accurate than the relative error bounds com-
puted with the optimization-based approach. We also noticed that running times
for the forward dataflow analysis in combination with subdivision are significantly
less than for any other configuration. Thus, we can potentially improve the accu-
racy by increasing subdivision parameters m and p, while running times would be
comparable to the running times of other techniques.

The tightest bounds for each benchmark were computed using one of the con-
figurations of the optimization-based approach, and the difference between error
bounds for different configurations is rather small. The most significant difference
between configurations is in their running times, thus we choose the one with the
smallest running time. We conclude, that the best trade-off between accuracy and
performance has been shown by the optimization-based approach without subdivi-
sion and using the Z3 solver.

5.4.3 Effect of Denormals

In the floating-point approximation f̃(x, e, d), we have two arguments that capture
the roundoff error: e for normal numbers and d for denormals. The latter are re-
quired for complete soundness, but using them is expensive and their effect is usu-
ally small. There may be applications, where using denormals is not really necessary.
We investigate the effect of the error term d in the abstraction. For that we compare
the error bounds computed using the abstraction f̃(x, e, d) with and f̃(x, e) without
denormals.

We have implemented the optimization based approach for both the absolute
and relative error bounds estimation in Daisy, and compare the effect of denormals
in both cases. As we defined in the previous section subsection 5.4.2 a good trade-
off between accuracy and performance is achieved with the optimization-based ap-
proach without subdivisions using the Z3 solver. We use this configuration for all
experiments, the timeout for Z3 is set to 1 second.

Table 5.5 shows absolute error bounds for the abstraction with and without the
term d (standing for denormals) and running times respectively. The column ‘Abso-
lute error bounds with denormals’ presents results for absolute error bounds, com-
puted in the presence of error terms d in the abstraction f̃(x, e, d), the column ‘with-
out’ denotes relative errors, computed for the abstraction f̃(x, e) without terms d.
Columns ‘Absolute times with denormals’ and ‘without’ denote running times for
error computations with abstractions f̃(x, e, d) and f̃(x, e) respectively.

We observe that the absolute error bounds are exactly the same for abstractions
f̃(x, e, d) and f̃(x, e) up to the fourth digit in the fractional part for all benchmarks
except kepler2. The running times for f̃(x, e), perhaps surprisingly, are only slightly
smaller than for the abstraction f̃(x, e, d). For the three benchmarks in kepler, the
total running time without denormals is even larger than with denormals in the



34 Chapter 5. Bounding Relative Errors

Benchmark Absolute error bounds Running times
with denormals without with denormals without

Univariate benchmarks

bspline0 1.1926e-16 1.1926e-16
bspline1 6.5077e-16 6.5077e-16
bspline2 5.8233e-16 5.8233e-16
bspline3 1.1102e-16 1.1102e-16
bsplines 29.81s 31.12s

sine 6.5413e-16 6.5413e-16
sineOrder3 7.9985e-16 7.9985e-16

sine 45.13s 45.13s
sqroot 3.9725e-13 3.9725e-13 19.01s 18.83s

Multivariate benchmarks

doppler 1.7404e-13 1.7404e-13 2m 33s 1m 25s
himmilbeau 1.4211e-12 1.4211e-12 35.70s 34.60s

invPendulum 4.4371e-14 4.4371e-14 5.78s 6.07s
jet 2.4939e-11 2.4939e-11 9m 41s 9m 9s

kepler0 1.1515e-13 1.1515e-13
kepler1 4.9898e-13 4.9898e-13
kepler2 2.2777e-12 2.2241e-12

kepler 5m 41s 6m 35s
rigidBody1 5.0793e-13 5.0793e-13
rigidBody2 6.4752e-11 6.4752e-11

rigidBody 49.80s 55.70s
traincar_state8 1.3323e-14 1.3323e-14
traincar_state9 1.1991e-14 1.1991e-14

traincar 32.92s 27.70s
turbine1 2.8023e-14 2.8023e-14
turbine2 3.6663e-14 3.6663e-14
turbine3 1.6540e-14 1.6540e-14

turbine 1m 50s 1m 36s

total 23m 23s 22m 23s

TABLE 5.5: Absolute errors for different abstractions (with/without
denormals)

abstraction. This is a special case and we suspect, that for at least one of the kepler
benchmarks adding d-s to the abstraction makes it easier for Z3 to process the query.

The results show that for absolute errors the difference (in both accuracy and per-
formance) between using the abstraction f̃(x, e, d) or f̃(x, e) is rather insignificant.

We then investigate the effect of denormals on relative errors. Relative error
bounds and running times are presented in Table 5.6. Similarly to our comparison
for absolute errors for relative errors columns ‘with denormals’ and ‘without’ denote
computations for the abstractions f̃(x, e, d) and f̃(x, e).

We noticed that for all benchmarks except for kepler0 relative errors computed
with and without denormals are exactly the same up to the fourth digit in fractional
part. Comparing running times for kepler0 we see that the abstraction f̃(x, e) without
denormals has been actually slower than the f̃(x, e, d) with denormals, that means
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Benchmark Relative error bounds Running times
with denormals without with denormals without

Univariate benchmarks

bspline0 2.9976e-15 2.9976e-15 5.09s 2.77s
bspline1 3.2197e-15 3.2197e-15 6.26s 4.02s
bspline2 8.9220e-16 8.9220e-16 7.60s 3.54s
bspline3 6.6614e-16 6.6614e-16 1.45s 0.13s

sine 7.6590e-16 7.6593e-16 1m 1.26s 12.15s
sineOrder3 8.9422e-16 8.9423e-16 3.13s 2.53s

sqroot 1.0214e-15 1.0214e-15 14.30s 8.90s

Multivariate benchmarks

doppler 1.9312e-13 1.9310e-13 1m 59s 15.44s
himmilbeau 6.5417e-13 6.5417e-13 1m 50s 1m 35s

invPendulum 1.2124e-15 1.2124e-15 6.92s 6.53s
jet 4.4738e-15 4.4738e-15 30m 40s 2m 3s

kepler0 3.9676e-12 1.9846e-12 28.22s 46.66s
kepler1 3.7956e-11 3.7956e-11 1m 44s 1m 25s
kepler2 4.5606e-10 4.5606e-10 1m 16s 38.12s

rigidBody1 9.7794e-16 9.7794e-16 7.48s 6.55s
rigidBody2 2.2135e-15 2.2135e-15 22.99s 10.87s

traincar_state8 7.6668e-14 7.6668e-14 32.38s 23.67s
traincar_state9 3.4476e-14 3.4476e-14 28.33s 21.99s

turbine1 2.0616e-15 2.0616e-15 1m 41s 13.73s
turbine2 4.1184e-15 4.1184e-15 2m 14s 1m 24s
turbine3 1.9150e-14 1.9150e-14 1m 34s 20.14s

total 46m 4s 10m 2s

TABLE 5.6: Relative errors for different abstractions (with/without
denormals)

the solver timed out (more often) for f̃(x, e). Similarly to the absolute error com-
parison results, we conclude that including terms d made it easier for the solver
to process the query for this particular benchmark. For the rest of benchmarks the
running times confirm our hypothesis: computing relative errors using abstraction
f̃(x, e) (without denormals) is significantly faster (the difference between running
times is up to the factor of 5 for sine and jet).

The analysis using the abstraction f̃(x, e, ) runs faster without loss of accuracy,
however, we should not forget that the error bounds computed using f̃(x, e) are
not sound. Thus, using the abstraction f̃(x, e) without denormals may be a good
alternative if complete soundness is not required.

5.4.4 Scalability of Relative Errors

The magnitude of roundoff errors (both absolute and relative) depends on the mag-
nitude of input values. Larger input domains cause larger roundoff errors, but also
the over-approximation of the errors grows together with the size of input domain.
Ideally, we want this over-approximation to grow as slowly as possible. In this sec-
tion, we explore the scalability of the two approaches for computing relative error



36 Chapter 5. Bounding Relative Errors

Benchmark via absolute errors directly
small large ratio small large ratio

Univariate benchmarks

bspline0 6.44e-15 4.12e-13 64 9.99e-16 3.00e-15 3
bspline1 1.57e-15 2.54e-15 2 2.07e-15 3.22e-15 2
bspline2 6.71e-16 1.11e-15 2 6.75e-16 8.92e-16 1.32
bspline3 3.27e-13 2.46e-10 750.96 6.66e-16 6.66e-16 1

sine 7.44e-16 8.94e-16 1.20 6.77e-16 7.66e-16 1.13
sineOrder3 5.70e-16 1.04e-15 2 4.81e-16 8.94e-16 2

sqroot 6.49e-16 1.04e-15 1.61 5.65e-16 1.02e-15 1.81

Multivariate benchmarks

doppler 1.48e-11 2.08e-04 1.40e+07 1.26e-15 1.93e-13 153.48
himmilbeau 1.21e-15 6.55e-13 541.15 7.78e-16 6.54e-13 841.07

invPendulum 2.96e-13 2.09e-11 70.74 1.21e-15 1.21e-15 1
jet 9.05e-15 9.26e-15 1.02 4.60e-15 4.47e-15 0.97

kepler0 1.40e-15 1.31e-12 934.97 1.17e-15 3.97e-12 3.39e+03
kepler1 1.47e-15 2.17e-11 1.47e+04 3.06e-15 3.80e-11 1.24e+04
kepler2 4.28e-15 4.01e-10 9.37e+04 7.42e-15 4.56e-10 6.15e+04

rigidBody1 1.40e-12 8.77e-11 62.66 9.75e-16 9.78e-16 1
rigidBody2 2.00e-15 3.91e-12 1.95e+03 1.16e-15 2.21e-15 1.90

traincar_state8 6.93e-15 2.16e-13 31.18 1.64e-15 7.67e-14 46.85
traincar_state9 4.61e-15 3.44e-13 74.67 1.73e-15 3.45e-14 19.96

turbine1 4.46e-14 6.47e-13 14.50 1.75e-15 2.06e-15 1.18
turbine2 6.94e-16 5.26e-15 7.57 6.91e-16 4.12e-15 5.96
turbine3 1.10e-13 3.52e-13 3.20 6.50e-15 1.91e-14 2.94

TABLE 5.7: Relative error scalability with respect to the size of the
input domain

bounds: the direct computation of relative errors and computing via absolute error
with respect to the size of the input domain.

For the experiments in previous sections, we use as large input domains as pos-
sible without introducing result ranges which include zero. Now for our scalability
comparison we also compute relative errors on small input domains. For that we
modify the standard input domains of the benchmarks such that the width of input
intervals is reduced, while the function ranges still do not contain zero. All experi-
ments are performed with the Z3 solver with a timeout set to 1 second. The relative
errors are computed without interval subdivision, since we noticed that it has a lim-
ited effect on accuracy while increasing running times.

Table 5.7 presents relative error bounds computed for smaller and larger input
domains. Columns ‘small’ and ‘large’ show relative errors computed on smaller
and larger input domains respectively. Column ‘ratio’ presents a relation between
the values for the large and small domains. This relation characterizes the scalability
of the approach, the smaller, the better.

Comparing the numbers from the ‘ratio’ columns we notice that for direct com-
putation ratio is significantly smaller than for the computation via absolute errors.
This means that the over-approximation committed by the direct computation is
smaller than the over-approximation committed by the relative error computation
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via absolute errors. The most prominent example is the doppler benchmark, where
the directly computed error relative grew for the larger domain by two orders of
magnitude, while the relative error computed via absolute grew by seven orders of
magnitude. Based on these results we conclude that relative errors computed di-
rectly scale better than relative errors computed via absolute with respect to the size
of the input domain.
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Division by zero

An important challenge arising while computing relative errors is how to handle
potential divisions by zero. State-of-the-art tools today simply do not report any
error at all whenever the function range contains zero. Unfortunately, this is not a
rare occurrence; on a standard benchmark set for floating-point verification, many
functions exhibit division by zero (see Table 6.2 for our experiments).

Note that these divisions by zero are inherent to the expression which we consider
and are usually not due to over-approximations in the analysis. Thus, we can only
reduce the effect of division by zero, but we cannot eliminate it entirely. Here, we
aim to reduce the domain for which we cannot compute relative errors. Similar to
how relative and absolute errors are combined in the IEEE 754 floating-point model
(Equation 2.2), we want to identify parts of the input domain on which relative error
computation is not possible due to division by zero and compute absolute errors.
For the remainder of the input domain, we compute relative errors as before.

We use interval subdivision (section 5.1), attempting to compute relative errors
(with one of the methods described before) on every sub-domain. Where the com-
putation fails due to (potential) division by zero, we compute the absolute error and
report both to the user:

relError: 6.6614143807162e-16

On several sub-intervals relative error cannot be computed.

Computing absolute error on these sub-intervals.

For intervals (u -> [0.875,1.0]), absError: 9.66746937132909e-19

While the reported relative error bound is only sound for parts of the domain, we
believe that this information is nonetheless more informative than either no result at
all or only an absolute error bound, which today’s tools report and which may suffer
from unnecessary over-approximations.

6.1 Possible Improvements

We realize that while this approach provides a practical solution, it is still prelimi-
nary and can be improved in several ways.
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First, a smarter subdivision strategy would be beneficial. Currently, we divide
the domain into equal-width intervals, and vary only their number. The more fine-
grained the subdivision, the bigger part of the domain can be covered by relative
error computations, however the running time increases correspondingly. Ideally,
we could exclude from the relative error computation only a small domain around
the zeros of the function f . While for univariate functions, this approach is straight-
forward (zeros can be, for instance, obtained as models from a nonlinear decision
procedure), for multivariate functions this is challenging, as the zeros are not simple
points but curves.

Secondly, subdivision could only be used for determining which sub-domains
exhibit potential division by zero. The actual relative error bound computation can
then be performed on the remainder of the input domain without subdividing it.
This would lead to performance improvements, even though the ‘guaranteed-no-
zero’ domain can still consist of several disconnected parts. Again, for univariate
functions this is a straight-forward extension, but non-trivial for multivariate ones.

Finally, whenever the function evaluates to zero f(x) = 0 we can replace its
value with some small ε. Thus, for the sub-domains where division by zero occurs,
we would compute:

errrel_approx_i =

∣∣∣∣∣f(x)− f̃(x, e, d)

f(x) + ε

∣∣∣∣∣ (6.1)

Note, that such an approximation is a common approach in scientific computing,
even though Equation 6.1 does not compute the same relative error as we did before.
For this reason, for now we do not follow this approach.

6.2 Experimental Evaluation

To evaluate whether interval subdivision is helpful when dealing with inherent di-
vision by zero, we now consider the standard benchmark set with standard input
domains (as used in [2, 4], presented in Appendix A). We note that for these bench-
marks division by zero indeed does occur quite often, that can be seen from our
evaluation. We first find a default configuration for subdivision based on experi-
ments and then compare relative errors computed with this configuration against
relative errors computed with state-of-the-art tools.

6.2.1 Finding Default Configuration

Recall, the interval subdivision is parametric in the amount of subdivisions for each
interval m and the total amount of optimizations p. The parameter m regulates how
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Benchmark # of vars
p = 50 p = 100

m = 4 m = 6 m = 8 m = 4 m = 6 m = 8

Univariate benchmarks

bspline0 1 1 (4) 1 (6) 1 (8) 1 (4) 1 (6) 1 (8)
bspline1 1 1 (4) 1 (6) 0 (8) 1 (4) 1 (6) 0 (8)
bspline2 1 0 (4) 0 (6) 0 (8) 0 (4) 0 (6) 0 (8)
bspline3 1 1 (4) 1 (6) 1 (8) 1 (4) 1 (6) 1 (8)

sine 1 2 (4) 2 (6) 2 (8) 2 (4) 2 (6) 2 (8)
sineOrder3 1 - 2 (6) 2 (8) - 2 (6) 2 (8)

sqroot 1 3 (4) 2 (6) 3 (8) 3 (4) 2 (6) 3 (8)

Multivariate benchmarks

doppler 3 0 (16) 0 (36) 0 (8) 0 (64) 0 (36) 0 (64)
himmilbeau 2 12 (16) 17 (36) - 12 (16) 17 (36) 15 (64)

invPendulum 4 12 (16) 22 (36) 6 (8) 32 (64) 22 (36) 34 (64)
jet 2 15 (16) 33 (36) - 15 (16) 33 (36) 56 (64)

kepler0 6 - - - 49 (64) - -
kepler1 4 - - - 63 (64) - -
kepler2 6 - - - - - -

rigidBody1 3 - - - 46 (64) - -
rigidBody2 3 - - - 50 (64) - -

traincar_state8 14 - - - - - -
traincar_state9 14 - - - - - -

turbine1 3 0 (16) 0 (36) 0 (8) 0 (64) 0 (36) 0 (64)
turbine2 3 10 (16) 17 (36) 6 (8) 25 (64) 17 (36) 25 (64)
turbine3 3 0 (16) 0 (36) 0 (8) 0 (64) 0 (36) 0 (64)

The first number stands for the amount of sub-domains where computation of
relative errors failed, the second is the total amount of sub-domains. For example

1(4) means that on one of the four sub-domains division by zero occurred.

TABLE 6.1: Comparison of different configurations for subdivision

fine-grained the subdivision of each input interval should be, while the parameter
p is intended to limit the running time. p bounds not only the total amount of op-
timization runs, but also regulates for how many variables the input intervals are
subdivided. This balance between more subdivisions for one interval and more input
intervals being subdivided may change if we have to deal with potential division by
zero. Thus, we do not reuse the configuration found in subsection 5.4.1, and perform
the comparison for several values of m and p. We compare results for m = 4, 6 and
8 and p = 50, 100.

The focus of this comparison is to find a configuration which computes rela-
tive errors for as many benchmarks as possible and for as big part of the input do-
main as possible. Therefore, for different configurations we compare the amount
of sub-domains where computations failed because of division by zero. Table 6.1
summarizes our results. Columns m = 4, m = 6 and m = 8 show the amount of
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sub-domains where division by zero occurred for 4, 6 and 8 subdivisions for each
input interval with upper limit for total amount of optimizations p = 50 and 100

respectively. The result consists of two values: the first value is the amount of sub-
domains where computation of relative errors failed, the second is the total amount
of sub-domains, e.g. 0(4) means that relative error has been successfully computed
on all sub-domains. Underline marks the results, for which relative error computa-
tion failed (due to division by zero) on more than 80% of sub-domains. We consider
such results to be impractical and thus will not report error bounds for these cases.
Whenever we report ‘-’ in the table, this means that relative error computations re-
ported division by zero for all sub-domains.

For univariate benchmarks we see for almost all benchmarks all configurations
provided relative error bounds. Only for sineOrder subdivision of m = 4 sub-
intervals is not sufficient to obtain a result. Interestingly, for bspline1 computations
reported division by zero for m = 4 and m = 6, but for the more fine-grained subdi-
vision m = 8 no division by zero occurred, and it was possible to compute relative
error bound for all sub-domains. Since the configuration m = 8 p = 50 allows to
compute relative error for all univariate benchmarks in our set, we choose it as a
default for univariate benchmarks. Note that for univariate benchmarks it does not
play a role whether we take p = 50 or p = 100, as the amount of sub-domains for all
tested values of m is lower than 50 and 100.

We noticed that for multivariate benchmarks there is one configuration that al-
lowed to compute relative error for most of the benchmarks, that is m = 4, p = 100.
That means that for this set of multivariate benchmarks it is beneficial to subdivide
each individual interval less, while having intervals for more variables subdivided.
We choose this configuration as default for multivariate benchmarks.

For some benchmarks, however, independent from the subdivision parameters
it was still not possible to compute any estimate of relative error, or the computed
error bound is valid for only a small sub-domain (jet and kepler1).

6.2.2 Comparison with State-of-the-Art Tools

We compare the results of relative error computations of state-of-the-art tools with
the default configuration for the interval subdivision combined with the forward
analysis and the optimization-based approach.

Table 6.2 summarizes our results. We report ‘-’ in the table whenever the tools
could not compute any relative error estimate or the computed error is valid on
less than 20% of sub-domains. Columns ‘Daisy’ and ‘FPTaylor’ show relative er-
ror bounds computed via absolute errors by Daisy(before this project) and FPTaylor
tool. Last three columns show our results when using interval subdivision. Column
‘fwd analysis+subdiv’ presents relative errors computed using the combination of
interval subdivision with forward analysis. Columns ‘Z3 + subdiv’ and ‘dReal +
subdiv’ show relative errors computed combining the interval subdivision with the
optimization based approach using the solvers Z3 and dReal respectively.
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We observe that while interval subdivision does not provide us with a result for
all benchmarks, it nonetheless computes estimates for more benchmarks than state-
of-the-art tools.

We also report running times for all benchmarks in Table 6.3. We present it inde-
pendently of whether an error estimate could be computed or not. Note that running
times are cumulated for benchmarks in one input program, e.g. times for sine and
sineOrder3 are summed and presented under sines.

We notice that running times for the optimization-based approach with both Z3
and dReal are significantly greater than for state-of-the-art tools. This is caused by
the fact that we run the analysis as many times as we have sub-domains. This means,
that we evaluate every term of the Taylor approximation Equation 5.4, including
the first order derivatives ∂g̃

∂ei
(x, 0, 0)ei and the second order derivatives summed in

MR, multiple times. On multivariate benchmarks this inevitably introduces a no-
ticeable slowdown, which is especially unwanted when no relative error is reported
in the end due to division by zero for every sub-domain. However, there is a prac-
tical solution to avoid long waiting times if no result can be computed. We noticed,
that whenever the combination of interval subdivision and the optimization-based
approach can compute relative error, the combination of interval subdivision with
forward analysis (’fwd analysis+subdiv’) also can, while running times for the lat-
ter combination of techniques are significantly less. Thus, we suggest to run ’fwd
analysis+subdiv’ configuration to obtain preliminary results and refine them when
necessary by applying the combination of the optimization based approach and in-
terval subdivision.
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Benchmark Daisy FPTaylor fwd analysis+subdiv
Optimization-based approach
Z3 + subdiv dReal + subdiv

Univariate benchmarks

bspline0 - - 1.58e-01 3.00e-15 3.00e-15
bspline1 - 3.32e-15 2.80e-13 3.22e-15 3.22e-15
bspline2 - 3.50e-15 9.20e-16 8.92e-16 8.92e-16
bspline3 - - 1.31e-14 6.66e-16 6.66e-16

sine - - 1.07e-15 7.02e-16 7.02e-16
sineOrder3 - - 2.29e-15 8.94e-16 8.94e-16

sqroot - - 7.09e-15 1.92e-15 1.92e-15

Multivariate benchmarks

doppler 1.48e-11 4.99e-12 8.95e-13 1.26e-15 1.35e-15
himmilbeau - - 3.75e-14 2.57e-14 2.84e-15

invPendulum - - 4.94e-15 2.82e-15 3.08e-15
jet - - - - -

kepler0 4.35e-15 4.57e-15 2.38e-13 2.16e-15 3.88e-15
kepler1 1.33e-14 1.17e-14 - - -
kepler2 - 4.21e-14 - - -

rigidBody1 - - 2.29e-14 1.07e-15 1.78e-15
rigidBody2 - - 2.65e-12 1.67e-15 3.80e-15

traincar_state8 - - - - -
traincar_state9 - - - - -

turbine1 6.12e-14 1.18e-14 6.03e-15 1.75e-15 5.21e-15
turbine2 - - 5.64e-14 2.74e-15 6.97e-14
turbine3 1.52e-13 2.21e-14 2.77e-14 6.50e-15 6.71e-15

TABLE 6.2: Relative error bounds computed by different techniques
on standard benchmarks (with potential division by zero)

Benchmark Daisy FPTaylor fwd analysis+subdiv
Optimization-based approach
Z3 + subdiv dReal + subdiv

Univariate benchmarks

bsplines 7.50s 16.91s 0.58s 2m 39s 1m 40s
sines 8.26s 10.89s 1.51s 8m 11s 7m 31s

sqroot 5.20s 5.48s 0.29s 56.78s 52.22s

Multivariate benchmarks

doppler 5.87s 10.00s 7.09s 2h 32m 37s 3h 15m 2s
himmilbeau 6.63s 8.77s 0.48s 5m 12s 3m 51s

invPendulum 3.35s 6.25s 0.45s 2m 42s 8m 33s
jet 48.44s 18.87s 12.00s 5h 28m 30s 7h 53m 45s

kepler 52.38s 2m 28s 3.56s 1h 13m 2s 12h 8m 52s
rigidBody 13.06s 10.47s 1.22s 11m 10s 1h 41m 16s

traincar 5.92s 54.97s 4.36s 16m 7s 1h 54m 16s
turbine 12.20s 31.44s 9.12s 4h 34m 52s 8h 45m 14s

total 2m 49s 5m 22s 41s 14h 35m 59s 36h 53s

TABLE 6.3: Running times for relative error computations for differ-
ent techniques on standard benchmarks (with potential division by

zero)
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Related Work

Th goal of this work is to find an automated and sound static analysis technique
for computing tight relative error bounds for floating-point arithmetic. The most
related work are current static analysis tools for computing absolute roundoff error
bounds [2–4, 16] which we have already reviewed.

Another closely related tool is Gappa [13]. Gappa is designed as a helper tool
for verifying the correctness of numerical programs in Coq, that provides a strong
guarantee for the computed bound. It appears relative errors can be both computed
directly or via absolute errors. The automated error computation inside Gappa uses
forward dataflow analysis and interval arithmetic. Thus, computation of relative
errors via absolute errors is less accurate than what Daisy performs, since Daisy
additionally refines intervals using a nonlinear decision procedure. Even if relative
errors are computed directly (is not clear if this done automatically), this amounts to
the naive approach, which we have implemented and showed that it works poorly.
Gappa also provides the possibility to apply user hints, which can potentially help
to compute better bounds, however, this approach is then comparable to interactive
theorem proving and not fully automated techniques.

The only direct relative error computation that we are aware of was used in the
context of verifying bit-shifting manipulations of floating-point numbers [20]. The
approach is specific to low-level bit operations and includes only polynomials. To
compute roundoff error bounds, the authors use the optimization based approach
similar to FPTaylor’s, but instead of using Taylor theorem the expression to be maxi-
mized is simplified by omitting sufficiently small polynomial terms. However, tight
error bounds are not the focus of the paper, and authors report only one of roundoff
errors, absolute or relative, whichever one is better. To summarize, while many tools
compute relative errors we are not aware of any systematic evaluation of different
approaches for sound relative error bounds.

7.1 Abstract Interpretation-Based Analysis

More broadly related are abstract interpretation-based static analyses which are so-
und with respect to floating-point arithmetic. The analyses utilize various abstract
domains: intervals [21–23], octagons [24, 25], polyhedra [23, 26] for which there exist
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implementations provided with a uniform API [22] and some of the domains have
been formalized in Coq [21]. These abstract domains are applied to track possible
values for floating-point variables and analyze whether they can overflow, turn to
infinity or throw any other exceptions specified in IEEE 754. They do not quantify
the difference between real and floating-point semantics, thus they only can prove
the absence of run-time errors but cannot report any roundoff errors.

7.2 Theorem Provers

Floating-point arithmetic has also been formalized in interactive theorem provers,
e.g. in Coq [27] and HOL-Light [28]. Verification conditions for numerical programs
can be generated automatically [29, 30], including reasoning about ranges in inter-
val [13] and affine arithmetic [31]. Using an existing formalization, verification con-
ditions can be discharged interactively with proof assistants to verify numerical pro-
grams. Entire numerical programs implemented in C have been proven correct [32,
33] including to errors introduced by rounding. For some specific programs (such as
xn) a very tight relative error bound can be proved [34]. However, these methods are
to a large part manual and require substantial user expertise in both floating-point
numbers and theorem provers. Our work is not program specific and it aims at a
different level of generality and thus does not need user’s expertise in floating-point
arithmetic as it is fully automated.

7.3 SMT-Lib Standard

Another formalization for theory of floating-point arithmetic is proposed in SMT-
Lib [35]. The formalization also supports all special values of the IEEE 754, arith-
metic and comparison operations and thus enables SMT solvers that follow the SMT-
Lib standard to handle floating-point arithmetic. Another decision procedure for the
theory of floating-point arithmetic is proposed by Brain et al. [36]. Authors present
a natural-domain SMT solver that combines interval abstraction for floating-points
with satisfiability algorithms. These are, however, not suitable for roundoff error
computation, as this would require to combine the theory of reals with the theory
of floating-points. Such a combination would currently be at the propositional level
only and thus does not lead to any useful results.

7.4 Dynamic Program Analysis

One more related approach is dynamic program analysis. Often a higher-precision
program is executed alongside the original one and thus by testing analyzers obtain
absolute [37] or relative roundoff errors [38], or detect digit cancellation events [39].
These methods include both error estimation based on maintaining shadow values
at higher precision and heuristic search guided testing and aim to obtain a lower
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bound on roundoff error, while we (and other static analysis tools) compute sound
upper bounds. The tool Herbie [40] not only computes the absolute roundoff error,
but suggests how to improve accuracy of the program by reordering arithmetic op-
erations preserving their real-valued semantic. It first identifies which operations
contribute the most to the absolute roundoff error. For that on several sampled
inputs it compares the result of the floating-point operation with the result of the
operation in arbitrary precision. For the operations with the highest error Herbie
searches possible improvements in a database of rewriting rules and generates al-
ternative operation. However, Herbie performs its analysis for randomly sampled
inputs and does not statically analyze programs. Thus, it cannot provide worst-case
error bound guarantees.

7.5 Mixed-Precision Optimization

Testing has also been used for optimizing mixed-precision computations in different
tools. Precimonious [41] uses the delta-debugging algorithm [42] to obtain possible
data type assignments for floating-point variables and executes a program with pro-
posed configurations in order to determine whether a newly proposed configuration
provides performance improvements. For this procedure it requires a representative
set of training inputs. Lam’s et al. mixed-precision tuning algorithm [43] modifies
the binary code of the original program and automatically searches the configura-
tion, which promises the greatest improvement in running time and memory band-
width usage. These tools, however, are based on testing and random input sampling
or only valid for a limited training input data set, and thus cannot provide sound er-
ror bounds.

For mixed-precision optimization there have recently appeared static analysis
tools that not only improve running times but guarantee that a specified accuracy
bound will be satisfied by the new data type assignment for all inputs from the de-
fined input range. Today’s tools use absolute roundoff error to define the accuracy
bound. One of the tools is called FPTuner [44]; it is a follow-up of FPTaylor, which
additionally to absolute roundoff error computations solves the second optimiza-
tion problem with performance as the objective. The second tool allowing auto-
mated sound mixed-precision tuning is the new feature of Daisy [45]. Additionally
to a mixed-precision assignment, Daisy also performs rewriting, i.e. re-ordering of
computations preserving real arithmetic semantics. Our approach is also applicable
to mixed-precision (without significant modifications), and thus could be used for
mixed-precision tuning with the relative error as a measure of accuracy.
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Chapter 8

Conclusion

Automated tools for sound absolute error analysis are intended to help developers
write more reliable code with respect to numerical errors. However, absolute er-
rors are not always a good estimate for the result’s quality. Our goal was to explore
today’s techniques for computing the relative roundoff errors and by combining dif-
ferent strategies to find a fully automated technique which computes sound and
tight relative error bounds.

We have presented the first experimental investigation into the suitability of dif-
ferent static analysis techniques for sound accurate relative error estimation. Pro-
vided that the function range does not include zero, computing relative errors di-
rectly usually yields error bounds which are (orders of magnitude) more accurate
than if relative errors are computed via absolute errors (as is the current state-of-
the-art). Surprising to us, while interval subdivision is beneficial for absolute error
estimation, when applied to the direct relative error computation it most often does
not have a significant effect on accuracy.

Additionally, we found that interval subdivision helps to alleviate the effect of
the inherent division by zero issue in relative error computation. Nonetheless it still
remains an open challenge.

Our experimental evaluation has also shown that the direct computation of rel-
ative errors scales better with respect to the input domains of a different sizes com-
pared to the relative error computation via absolute errors. We also demonstrate that
omitting error terms for denormals in relative error computations usually does not
effect accuracy, but gain performance. Thus, using the abstraction for floating-point
operation which does not include denormals may be a good alternative, if complete
soundness is not necessary.

During our experiments, we used the SMT solvers as part of an interval refin-
ing procedure. We noticed that while these tools are in general rigorous, they might
time out unpredictably. As a result, timeouts might lead to the premature stop of
the refinement procedure and, thus, coarser bounds. Therefore, we note that today’s
rigorous optimization tools could be improved in terms of both reliability and scal-
ability.

We believe that the results we obtained are encouraging and that our work is a
successful step towards improving techniques for computing relative error, which
may lead to better accuracy specifications in the future.





51

Bibliography

[1] R.E. Moore. Interval Analysis. Prentice-Hall, 1966.

[2] Eva Darulova and Viktor Kuncak. “Sound Compilation of Reals”. In: POPL.
2014.

[3] Eric Goubault and Sylvie Putot. “Static Analysis of Finite Precision Computa-
tions”. In: VMCAI. 2011.

[4] Alexey Solovyev et al. “Rigorous Estimation of Floating-Point Round-off Er-
rors with Symbolic Taylor Expansions”. In: FM. 2015.

[5] MPI-SWS. Daisy - a framework for accuracy analysis and synthesis of numerical
programs. Version 0.1. https://gitlab.mpi-sws.org/AVA/daisy-
public. 2017.

[6] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (Aug.
2008).

[7] David Goldberg. “What Every Computer Scientist Should Know About Floating-
point Arithmetic”. In: ACM Comput. Surv. 23.1 (Mar. 1991), pp. 5–48. ISSN:
0360-0300.

[8] L. H. de Figueiredo and J. Stolfi. “Affine Arithmetic: Concepts and Applica-
tions”. In: Numerical Algorithms 37.1-4 (2004).

[9] Eva Darulova and Viktor Kuncak. “Trustworthy Numerical Computation in
Scala”. In: Proceedings of the 2011 ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications. OOPSLA ’11. Portland,
Oregon, USA: ACM, 2011, pp. 325–344. ISBN: 978-1-4503-0940-0.

[10] Eva Darulova and Viktor Kuncak. “Towards a Compiler for Reals”. In: ACM
TOPLAS 39.2 (2017).

[11] Leonardo De Moura and Nikolaj Bjørner. “Z3: an efficient SMT solver”. In:
TACAS. 2008.
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Appendix A

Standard Benchmarks

In this appendix, we present the standard benchmarks with the standard input do-
mains with potential division by zero. These benchmarks are used in the experimen-
tal evaluation described in section 6.2.

Univariate benchmarks

− bsplines

def bspline0(u: Real): Real = {

require(0 <= u && u <= 1)

(1 - u) * (1 - u) * (1 - u) / 6.0

}

def bspline1(u: Real): Real = {

require(0 <= u && u <= 1)

(3 * u*u*u - 6 * u*u + 4) / 6.0

}

def bspline2(u: Real): Real = {

require(0 <= u && u <= 1)

(-3 * u*u*u + 3*u*u + 3*u + 1) / 6.0

}

def bspline3(u: Real): Real = {

require(0 <= u && u <= 1)

-u*u*u / 6.0

}

− sine

def sine(x: Real): Real = {

require(x > -1.57079632679 && x < 1.57079632679)

x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0

}

def sineOrder3(x: Real): Real = {

require(-2.0 < x && x < 2.0)

0.954929658551372 * x - 0.12900613773279798*(x*x*x)

}
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− sqroot

def sqroot(x: Real): Real = {

require(x >= 0.0 && x < 10.0)

1.0 + 0.5*x - 0.125*x*x + 0.0625*x*x*x - 0.0390625*x*x*x*x

}

Multivariate benchmarks

− doppler

def doppler(u: Real, v: Real, T: Real): Real = {

require(-100.0 <= u && u <= 100 && 20 <= v && v <= 20000 &&

-30 <= T && T <= 50)

(- (331.4 + 0.6 * T) *v) /

((331.4 + 0.6 * T + u)*(331.4 + 0.6 * T + u))

}

− himmilbeau

def himmilbeau(x1: Real, x2: Real) = {

require(-5 <= x1 && x1 <= 5 && -5 <= x2 && x2 <= 5)

(x1 * x1 + x2 - 11)*(x1 * x1 + x2 - 11) +

(x1 + x2*x2 - 7)*(x1 + x2*x2 - 7)

}

− invertedPendulum

def invPendulum(s1: Real, s2: Real, s3: Real, s4: Real) = {

require(-50 <= s1 && s1 <= 50 && -10 <= s2 && s2 <= 10 &&

-0.785 <= s3 && s3 <= 0.785 && -0.785 <= s4 && s4 <= 0.785)

1.0000 * s1 + 1.6567 * s2 + (-18.6854) * s3 + (-3.4594) * s4

}

− jetEngine

def jetEngine(x1: Real, x2: Real): Real = {

require(-5 <= x1 && x1 <= 5 && -20 <= x2 && x2 <= 5)

x1 + ((2 * x1 * ((3 * x1 * x1 + 2 * x2 - x1)/(x1 * x1 + 1))*
((3 * x1 * x1 + 2 * x2 - x1)/(x1 * x1 + 1) - 3) +

x1 * x1 * (4 * ((3 * x1 * x1 + 2 * x2 - x1)/(x1 * x1 + 1))-6)) *
(x1 * x1 + 1) + 3 * x1 * x1 *
((3 * x1 * x1 + 2 * x2 - x1)/(x1 * x1 + 1)) +

x1 * x1 * x1 + x1 + 3 * ((3 * x1 * x1 + 2 * x2 -x1)/(x1 * x1 + 1)))

}
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− kepler

def kepler0(x1: Real, x2: Real, x3: Real, x4: Real,

x5: Real, x6: Real): Real = {

require(4 <= x1 && x1 <= 6.36 && 4 <= x2 && x2 <= 6.36 &&

4 <= x3 && x3 <= 6.36 && 4 <= x4 && x4 <= 6.36 &&

4 <= x5 && x5 <= 6.36 && 4 <= x6 && x6 <= 6.36)

x2 * x5 + x3 * x6 - x2 * x3 - x5 * x6 +

x1 * (-x1 + x2 + x3 - x4 + x5 + x6)

}

def kepler1(x1: Real, x2: Real, x3: Real, x4: Real): Real = {

require(4 <= x1 && x1 <= 6.36 && 4 <= x2 && x2 <= 6.36 &&

4 <= x3 && x3 <= 6.36 && 4 <= x4 && x4 <= 6.36)

x1 * x4 * (-x1 + x2 + x3 - x4) + x2 * (x1 - x2 + x3 + x4) +

x3 * (x1 + x2 - x3 + x4) - x2 * x3 * x4 - x1 * x3 - x1 * x2 - x4

}

def kepler2(x1: Real, x2: Real, x3: Real, x4: Real,

x5: Real, x6: Real): Real = {

require(4 <= x1 && x1 <= 6.36 && 4 <= x2 && x2 <= 6.36 &&

4 <= x3 && x3 <= 6.36 && 4 <= x4 && x4 <= 6.36 &&

4 <= x5 && x5 <= 6.36 && 4 <= x6 && x6 <= 6.36)

x1 * x4 * (-x1 + x2 + x3 - x4 + x5 + x6) + x2 * x5 *
(x1 - x2 + x3 + x4 - x5 + x6) + x3* x6 *

(x1 + x2 - x3 + x4 + x5 - x6) - x2 * x3 * x4 -

x1* x3* x5 - x1 * x2 * x6 - x4 * x5 * x6

}

− rigidBody

def rigidBody1(x1: Real, x2: Real, x3: Real): Real = {

require(-15.0 <= x1 && x1 <= 15 && -15.0 <= x2 && x2 <= 15.0 &&

-15.0 <= x3 && x3 <= 15)

-x1*x2 - 2*x2*x3 - x1 - x3

}

def rigidBody2(x1: Real, x2: Real, x3: Real): Real = {

require(-15.0 <= x1 && x1 <= 15 && -15.0 <= x2 && x2 <= 15.0 &&

-15.0 <= x3 && x3 <= 15)

2*(x1*x2*x3) + (3*x3*x3) - x2*(x1*x2*x3) + (3*x3*x3) - x2

}
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− traincar

def state8(s0: Real, s1: Real, s2: Real, s3: Real, s4: Real,

s5: Real, s6: Real, s7: Real, s8: Real, y0: Real,

y1: Real, y2: Real, y3: Real, y4: Real) = {

require(-2.5 <= s0 && s0 <= 6.5 && -2.5 <= s1 && s1 <= 6.5 &&

-2.5 <= s2 && s2 <= 6.5 && -2.5 <= s3 && s3 <= 6.5 &&

-2 <= s4 && s4 <= 12 && -2 <= s5 && s5 <= 12 &&

-2 <= s6 && s6 <= 12 && -2 <= s7 && s7 <= 12 &&

-2 <= s8 && s8 <= 12 && -2 <= y0 && y0 <= 12 &&

-2 <= y1 && y1 <= 12 && -2 <= y2 && y2 <= 12 &&

-2 <= y3 && y3 <= 12 && -2 <= y4 && y4 <= 12)

(2.5093e-10)*s0 +(9.15884e-10)*s1+ (7.81656e-06)*s2+

(-7.81701e-06)*s3 + (-6.54335e-07)*s4 + (6.87341e-06)*s5 +

(1.00368e-05)*s6 + (0.999907)*s7 + (3.32876e-05)*s8 +

(6.5448232e-07)*y0 + (-6.8708837e-06)*y1 + (-8.9460042e-06)*y2 +

(9.0317123e-05)*y3+ (-3.2191562e-05)*y4 +

(-1.8530512e-13)*5.2121094496644555e+03

}

def state9(s0: Real, s1: Real, s2: Real, s3: Real, s4: Real,

s5: Real, s6: Real, s7: Real, s8: Real, y0: Real,

y1: Real, y2: Real, y3: Real, y4: Real) = {

require(-2.5 <= s0 && s0 <= 6.5 && -2.5 <= s1 && s1 <= 6.5 &&

-2.5 <= s2 && s2 <= 6.5 && -2.5 <= s3 && s3 <= 6.5 &&

-2 <= s4 && s4 <= 12 && -2 <= s5 && s5 <= 12 &&

-2 <= s6 && s6 <= 12 && -2 <= s7 && s7 <= 12 &&

-2 <= s8 && s8 <= 12 && -2 <= y0 && y0 <= 12 &&

-2 <= y1 && y1 <= 12 && -2 <= y2 && y2 <= 12 &&

-2 <= y3 && y3 <= 12 && -2 <= y4 && y4 <= 12)

(-1.73572e-09)*s0 +(-6.90441e-09)*s1 + (1.91831e-08)*s2 +

(7.80416e-06)*s3 + (5.01527e-06)*s4 + (-4.73947e-06)*s5 +

(4.30545e-07)*s6 +(3.35281e-05)*s7 + (0.999934)*s8 +

(-5.0163739e-06)*y0 + (4.7201386e-06)*y1 +

(-4.156438e-07)*y2 + (-3.2406398e-05)*y3 +

(6.4987306e-05)*y4 +

(1.4201936e-12)*5.2121094496644555e+03

}

− turbine

def turbine1(v: Real, w: Real, r: Real): Real = {

require(-4.5 <= v && v <= -0.3 && 0.4 <= w && w <= 0.9 &&

3.8 <= r && r <= 7.8)

3 + 2/(r*r) - 0.125*(3-2*v)*(w*w*r*r)/(1-v) - 4.5

}

def turbine2(v: Real, w: Real, r: Real): Real = {

require(-4.5 <= v && v <= -0.3 && 0.4 <= w && w <= 0.9 &&

3.8 <= r && r <= 7.8)

6*v - 0.5 * v * (w*w*r*r) / (1-v) - 2.5

}
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def turbine3(v: Real, w: Real, r: Real): Real = {

require(-4.5 <= v && v <= -0.3 && 0.4 <= w && w <= 0.9 &&

3.8 <= r && r <= 7.8)

3 - 2/(r*r) - 0.125 * (1+2*v) * (w*w*r*r) / (1-v) - 0.5

}
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Appendix B

Standard Benchmarks with
Modified Input Domains

In this appendix, we present the the modified input domains for the standard bench-
marks. Since the arithmetic expressions for these benchmarks remain unchanged,
we only present input domains. They are modified such that function range does
not include zero. We have performed the experiments on both larger and smaller
input domains, these are listed below in section B.1 and section B.2 respectively. We
use larger domains in the experiments throughout section 5.4 and in subsection 5.4.4
the smaller domains are used additionally.

B.1 Large Input Domains

Univariate benchmarks

− bsplines

def bspline0(u: Real): Real = {

require(0 <= u && u <= 0.875)

... }

def bspline1(u: Real): Real = {

require(0.875 <= u && u <= 1)

... }

def bspline2(u: Real): Real = {

require(0.5 <= u && u <= 1)

... }

def bspline3(u: Real): Real = {

require(0.125 <= u && u <= 10)

... }

− sine

def sine(x: Real): Real = {

require(x > 0.875 && x < 1.7)

... }
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def sineOrder3(x: Real): Real = {

require(-2.0 < x && x < -1.125)

... }

− sqroot

def sqroot(x: Real): Real = {

require(x >= 0.0 && x < 1.925)

... }

Multivariate benchmarks

− doppler

def doppler(...): Real = {

require(-100.0 <= u && u <= 1000 && 2 <= v && v <= 200000 &&

-300 <= T && T <= 500)

... }

− himmilbeau

def himmilbeau(...) = {

require(20 <= x1 && x1 <= 100 && -2<= x2 && x2 <= 20)

... }

− invertedPendulum

def invPendulum(...) = {

require(0.005 <= s1 && s1 <= 5000 && 0.005 <= s2 && s2 <= 1000 &&

-0.785 <= s3 && s3 <= -0.005 && -0.785 <= s4 && s4 <= -0.005)

... }

− jetEngine

def jetEngine(...): Real = {

require(4 <= x1 && x1 <= 4.65 && 1 <= x2 && x2 <= 6)

... }

− kepler

def kepler0(...): Real = {

require(4 <= x1 && x1 <= 6.36 && 0.0001 <= x2 && x2 <= 0.00015 &&

4.63 <= x3 && x3 <= 6306 && -10 <= x4 && x4 <= -0.01 &&

4 <= x5 && x5 <= 6.36 && 4 <= x6 && x6 <= 6.36)

... }

def kepler1(...): Real = {

require(4 <= x1 && x1 <= 6.36 && 0.04 <= x2 && x2 <= 0.0636 &&

40 <= x3 && x3 <= 6300.6 && 0.001 <= x4 && x4 <= 0.015)

... }
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def kepler2(...): Real = {

require(4 <= x1 && x1 <= 6.36 && 0 <= x2 && x2 <= 0 &&

40 <= x3 && x3 <= 63.6 && 0 <= x4 && x4 <= 0 &&

4 <= x5 && x5 <= 6.36 && 4 <= x6 && x6 <= 6000.36)

... }

− rigidBody

def rigidBody1(...): Real = {

require(-1500.0 <= x1 && x1 <= -0.0001 && 0.1 <= x2 && x2 <= 15.0 &&

-15.0 <= x3 && x3 <= -0.1)

... }

def rigidBody2(...): Real = {

require(-1500.0 <= x1 && x1 <= -1.125 && -15.0 <= x2 && x2 <= -11.25 &&

-15.0 <= x3 && x3 <= -11.25)

... }

− traincar

def state8(...) = {

require(25 <= s0 && s0 <= 6500 && -2.5 <= s1 && s1 <= 6.5 &&

-2.5 <= s2 && s2 <= 6.5 && -2.5 <= s3 && s3 <= 6.5 &&

-2 <= s4 && s4 <= 2750000 && -2 <= s5 && s5 <= 12 &&

-2 <= s6 && s6 <= 12 && -2 <= s7 && s7 <= 12 &&

-2 <= s8 && s8 <= 12 && -2 <= y0 && y0 <= 12 &&

-2 <= y1 && y1 <= 12 && -2 <= y2 && y2 <= 12 &&

-2 <= y3 && y3 <= 12 && -200000 <= y4 && y4 <= -120000)

... }

def state9(...) = {

require(-250 <= s0 && s0 <= -0.5 && -2.5 <= s1 && s1 <= 6.5 &&

-2.5 <= s2 && s2 <= 6.5 && -2.5 <= s3 && s3 <= 6.5 &&

-900000 <= s4 && s4 <= 2750000 &&

-2000000 <= s5 && s5 <= -1200000 &&

-2 <= s6 && s6 <= 12 && -2 <= s7 && s7 <= 12 &&

-2 <= s8 && s8 <= 12 && -200 <= y0 && y0 <= -120 &&

200000 <= y1 && y1 <= 1200000 && -2 <= y2 && y2 <= 12 &&

-2 <= y3 && y3 <= 12 && -2 <= y4 && y4 <= 12)

... }

− turbine

def turbine1(...): Real = {

require(-5.5 <= v && v <= -0.3 && 0.001 <= w && w <= 1.9 &&

3.8 <= r && r <= 10.8)

... }

def turbine2(...): Real = {

require(-4.5 <= v && v <= -3.3 && -0.4 <= w && w <= -0.01 &&

3.8 <= r && r <= 16.25)

... }
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def turbine3(...): Real = {

require(-4.5 <= v && v <= -0.3 && 0.4 <= w && w <= 0.9 &&

2.85 <= r && r <= 8.5)

... }

B.2 Small Input Domains

Univariate benchmarks

− bsplines

def bspline0(u: Real): Real = {

require(0 <= u && u <= 0.5)

... }

def bspline1(u: Real): Real = {

require(0.875 <= u && u <= 0.9)

... }

def bspline2(u: Real): Real = {

require(0.5 <= u && u <= 0.75)

... }

def bspline3(u: Real): Real = {

require(0.125 <= u && u <= 1)

... }

− sine

def sine(x: Real): Real = {

require(x > 0.875 && x < 1.57079632679)

... }

def sineOrder3(x: Real): Real = {

require(-1.5 < x && x < -1.125)

... }

− sqroot

def sqroot(x: Real): Real = {

require(x >= 0.0 && x < 1)

... }

Multivariate benchmarks

− doppler

def doppler(...): Real = {

require(-100.0 <= u && u <= 100 && 20 <= v && v <= 20000 &&

-30 <= T && T <= 50)

... }
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− himmilbeau

def himmilbeau(...) = {

require(0.1 <= x1 && x1 <= 0.5 && -2<= x2 && x2 <= 2)

... }

− invertedPendulum

def invPendulum(...) = {

require(0.005 <= s1 && s1 <= 50 && 0.005 <= s2 && s2 <= 10 &&

-0.785 <= s3 && s3 <= -0.005 && -0.785 <= s4 && s4 <= -0.005)

... }

− jetEngine

def jetEngine(...): Real = {

require(4 <= x1 && x1 <= 4.65 && 1 <= x2 && x2 <= 5)

... }

− kepler

def kepler0(...): Real = {

require(4 <= x1 && x1 <= 6.36 && 0.0001 <= x2 && x2 <= 0.00011 &&

40 <= x3 && x3 <= 63.6 && -6.36 <= x4 && x4 <= -4 &&

4 <= x5 && x5 <= 6.36 && 4 <= x6 && x6 <= 6.36)

... }

def kepler1(...): Real = {

require(4 <= x1 && x1 <= 6.36 && 0.04 <= x2 && x2 <= 0.0636 &&

40 <= x3 && x3 <= 63.6 && -6.36 <= x4 && x4 <= -4)

... }

def kepler2(...): Real = {

require(4 <= x1 && x1 <= 6.36 && 0.0001 <= x2 && x2 <= 0.00011 &&

40 <= x3 && x3 <= 63.6 && -6.36 <= x4 && x4 <= -4 &&

4 <= x5 && x5 <= 6.36 && 4 <= x6 && x6 <= 6.36)

... }

− rigidBody

def rigidBody1(...): Real = {

require(-15.0 <= x1 && x1 <= -0.1 && 0.1 <= x2 && x2 <= 15.0 &&

-15.0 <= x3 && x3 <= -0.1)

... }

def rigidBody2(...): Real = {

require(-15.0 <= x1 && x1 <= -11.25 && -15.0 <= x2 && x2 <= -11.25 &&

-15.0 <= x3 && x3 <= -11.25)

... }
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− traincar

def state8(...) = {

require(250 <= s0 && s0 <= 650 && -2.5 <= s1 && s1 <= 6.5 &&

-2.5 <= s2 && s2 <= 6.5 && -2.5 <= s3 && s3 <= 6.5 &&

-2 <= s4 && s4 <= 12 && -2 <= s5 && s5 <= 12 &&

-2 <= s6 && s6 <= 12 && -2 <= s7 && s7 <= 12 &&

-2 <= s8 && s8 <= 12 && -2 <= y0 && y0 <= 12 &&

-2 <= y1 && y1 <= 12 && -2 <= y2 && y2 <= 12 &&

-2 <= y3 && y3 <= 12 && -200000 <= y4 && y4 <= -120000)

... }

def state9(...) = {

require(-250 <= s0 && s0 <= -0.5 && -2.5 <= s1 && s1 <= 6.5 &&

-2.5 <= s2 && s2 <= 6.5 && -2.5 <= s3 && s3 <= 6.5 &&

-2 <= s4 && s4 <= 12 && -2000000 <= s5 && s5 <= -1200000 &&

-2 <= s6 && s6 <= 12 && -2 <= s7 && s7 <= 12 &&

-2 <= s8 && s8 <= 12 && -200 <= y0 && y0 <= -120 &&

200000 <= y1 && y1 <= 1200000 && -2 <= y2 && y2 <= 12 &&

-2 <= y3 && y3 <= 12 && -2 <= y4 && y4 <= 12)

... }

− turbine

def turbine1(...): Real = {

require(-4.5 <= v && v <= -0.3 && 0.4 <= w && w <= 0.9 &&

3.8 <= r && r <= 7.8)

... }

def turbine2(...): Real = {

require(-4.5 <= v && v <= -3.3 && -0.4 <= w && w <= -0.1 &&

3.8 <= r && r <= 7.8)

... }

def turbine3(...): Real = {

require(-4.5 <= v && v <= -0.3 && 0.4 <= w && w <= 0.9 &&

3.8 <= r && r <= 7.8)

... }
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